簡易檢索 / 詳目顯示

研究生: 馬蘇門
Soumen Mazumder
論文名稱: 以結構重置方式用於 AlGaN/GaN 高電子遷移率電晶體的表現提升及熱力工程在高功率元件的應用
Performance Enhancement of AlGaN/GaN based High Electron Mobility Transistor (HEMT) with Structural Reconfiguration and Thermal Engineering for High Power Applications
指導教授: 王永和
Wang, Yeong-Her
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 140
中文關鍵詞: 常規 HEMT( c-HEMT)奈米通道 HEMT( NC-HEMT)填充因子( FF)GaN2DEG閘極後退火( PGA)臨界電壓( VTH)次臨界擺幅( SS)AlGaN/ AlN/GaN氧化鎵MOSHEMTHfSiOX紫外線/氧氣鈍化界面陷阱密度Flicker 雜訊類似 MOS-HEMT 的 Flash陷阱輔助穿隧雙閘極 (DG)多閘極 (MG) 浮動金屬閘極間距 (IGS)RON, SP
外文關鍵詞: conventional HEMT (c-HEMT), nanochannel HEMT (NC-HEMT), fill factor (FF), GaN, 2DEG, post gate annealing (PGA), threshold voltage (VTH), subthreshold swing (SS), AlGaN/AlN/GaN, gallium oxide, MOS-HEMT, HfSiOX, UV/O3, passivation, interface trap density, flicker noise, Flash like MOS-HEMT, Trap assisted tunnelling, Dual-gate (DG), Multi-gate (MG) floating metal, inter gate spacing(IGS), RON,SP
相關次數: 點閱:217下載:36
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇文章分析了閘極後退火處理對於的氮化鋁鎵/氮化鋁/氮化鎵奈米通道高電子
    遷移率電晶體之電性的影響,其通道長度分別為 200,400,600,800 奈米且填充因子
    為 0.45。在 10 分鐘攝氏 400 度的閘極後退火處理後,可發現 NC-HEMT 的直流電性參
    數有系統性的提升。透過二次離子質譜儀分析在攝氏 200 度、 300 度、 400 度以及
    500 度退火下的 NC-HEMT 以找出最佳的閘極後退火條件。由結果可知當退火溫度高於
    400 度時,閘極金屬(鎳/金)將會擴散至 AlGaN/AlN/GaN 的主動層進而劣化元件特性。
    在通道長度為 200 奈米的 NC-HEMT 元件中,可觀察到透過閘極後退火可移除因電感
    耦合電漿乾式蝕刻所造成的淺陷阱,因此將蕭特基位障高度由原本的 0.42 電子伏特
    提升至 1.40 電子伏特,進而顯著地降低閘極漏電流約 3 個數量級。
    此外,以氧化鋁/二氧化矽作為閘極介電層的 AlGaN/GaN HEMT 可利用陷阱輔
    助技術以達到類似快閃記憶體之功能。此元件展示了在相對較低的讀寫偏壓(3 伏特)
    下,臨界電壓向正向大幅度偏移了 4.6 伏特,因此達到-0.3 伏特的臨界電壓及 575V
    毫安培-毫米的最大汲極電流。在閘極介電層沉積前以紫外光/臭氧表面處理,使
    GaN/氧化物介面處可產生 GaOxNY 的薄層,而此層可作為陷阱輔助層,為讀寫偏壓得
    以降低的主要原因。根據 C-V 測量結果,造成大幅度臨界電壓正偏移的陷阱密度高
    達 5.7*1012 每平方公分。這些陷阱可歸類為介面或氧化層的缺陷。由於氧化鋁與二
    氧化矽的介面品質良好,使得 MIS-HEMT 相較於傳統 HEMT 有更低的閘極漏電流。此
    類似快閃記憶體的 MIS-HEMT 元件擁有 123 毫西門子/毫米的轉移電導、 1.7*1017的開
    關比、 121 的次臨界擺幅以及 7.5*10-9的閘極漏電流。
    表面鈍化處理對於 MOS-HEMT 的電流崩塌、其他元件特性的提升與可靠度而言
    十分重要。本篇文章中,我們將會展示在沉積二氧化矽前,施加紫外光/臭氧表面鈍
    化處理在 AlGaN/AlN/GaN MOS-HEMT 上。我們使用 X 射線光電子能譜來驗證在 GaN 表面鈍化有所提升。由於紫外光/臭氧表面處理造成二氧化矽/氮化鎵介面的能帶彎曲,
    進而使得 MOS-HEMT 的臨界電壓正向偏移。此外,元件的電流崩塌現象、磁滯效應以
    及 1/f 特性由於 HfSiOX 鈍化層而有所改善。綜合上述兩種鈍化方式,使得介面陷阱
    得以大幅度地減少,而使得使用二氧化矽的 MOS-HEMT 電流崩塌幅度由原來的 10%改
    善至 0.6%。透過上述兩種方式鈍化的 MOS-HEMT 有著 655 毫安培每毫米的最大汲極電流、 116毫西門子每毫米的轉移電導、約107的開關比、 85的次臨界擺幅以及9.1*10-
    10安培每毫米的閘極漏電流。
    我們展示了擁有目前最佳特性值的雙浮動閘極與多重浮動閘極的 MOS-HEMT,
    其閘極間距分別為 0.25 微米與 0.5 微米。多重浮動閘極 MOS-HEMT 的特性值達到 1.8,其歸因於 425 伏特的崩潰電壓 0.105 毫歐姆-平方公分的 Ron,sp。我們分別以定性、定量的討論部分掘入場板結構對於多重浮動閘極 MOS-HEMT 特性有何提升。元件的電場分佈也可由 Silvaco 電場模擬的結果來驗證。排列良好、高密度的二維電子雲與高效閘極調變能力的多重浮動閘極 MOS-HEMT 展示了 597 毫安培每毫米的最大汲極電流、截止頻率為 16GHz、最大振盪頻率為 23GHz 與 26.7%的功率轉換效率。

    The effects of a post-gate annealing (PGA) treatment on the electrical performance of AlGaN/AlN/GaN nanochannel high electron mobility transistors (NC-HEMTs) with channel widths of 200, 400, 600, and 800 nm for a constant fill factor of 0.45 were analyzed. A systematic improvement in the DC parameters was observed in the NC-HEMTs after PGA treatment at 400 °C for 10 min. Secondary ion mass spectroscopy was performed at 300 °C, 400 °C, and 500 °C on 10-
    min annealed and as-deposited NC-HEMT to optimize the PGA conditions. Annealing at higher temperatures (> 400 °C) could cause the diffusion of the gate metal (Ni/Au) into the AlGaN/AlN/GaN active layer, which subsequently degrades the device performance. The removal of shallow traps, which were created by ICP dry etching, after the PGA treatment improved the Schottky barrier height
    (ΦB) from 0.42 eV to 1.40 eV and resulted in a significant reduction in the gate leakage current (IG) of approximately three orders of magnitude in the NC-HEMT with a channel width of 200 nm.
    Moreover, a flash-like Al2O3/SiO2 stacked layer AlGaN/GaN-based metal insulator
    semiconductor HEMT (MIS-HEMT) was fabricated using trap-assisted technique. The MIS-HEMT showed a large positive shifting of threshold voltage (ΔVTH) of 4.6 V after applying a low program voltage (VP) of 3 V, resulting in a very low ΔVTH of −0.3 V with a decent maximum drain current (IDMAX) of 575 mA m m−1. Ultraviolet-ozone (UV/O3) surface treatment was performed prior to gate
    dielectric deposition to produce a thin gallium oxynitride (GaOXNY) layer, which correspondingly acts as a charge trapping layer, at the GaN/oxide interface, resulting in the reduction in VP. Capacitance–voltage (C–V) measurements revealed that the traps contributing to the significant positive shifting of VTH had a density of 5.7 × 1012 cm−2. These traps were attributed to the border or oxide defects. A significant reduction in IG of more than three orders of magnitude was found in MISHEMT due to the high-quality Al2O3/SiO2 stack gate dielectric layer compared with conventional HEMT. The flash-like stack layered programmed MIS-HEMT exhibited a GMMAX of 123 mS mm−1, an on–off ratio of 1.7 × 107, and a subthreshold slope of 121 mV dec−1 with a reduced gate leakage current of 7.5 × 10−9 A mm−1. Surface passivation is critically important to improve the current collapse and the overall device performance in metal-oxide semiconductor HEMTs (MOS-HEMTs) and thus, their reliability. In this paper, the surface passivation effects in AlGaN/AlN/GaN-based MOS-HEMTs were demonstrated using UV/O3 plasma treatment prior to SiO2-gate dielectric deposition. X-ray photoelectron spectroscopy was used to verify the improved passivation of the GaN surface. The
    ΔVTH of MOS-HEMT was shifted towards positive due to the band bending at the SiO2/GaN interface by UV/O3 surface treatment. In addition, the device performance, especially the current collapse, hysteresis, and 1/f characteristics, was further significantly improved with an additional 15 nm-thick hafnium silicate (HfSiOX) passivation layer after the gate metallization. Due to the combined effects
    of UV/O3 plasma treatment and HfSiOX surface passivation, the magnitude of the interface trap density was effectively reduced, which further improved the current collapse significantly in SiO2- MOS-HEMT to 0.6% from 10%. The UV/O3-surface-modified, HfSiOX-passivated MOS-HEMT exhibited a decent performance, with an IDMAX of 655 mA/mm, a GMMAX of 116 mS/mm, a higher ION/IOFF ratio of approximately 107, and a subthreshold swing of 85 mV/dec with significantly
    reduced gate leakage current (IG) of 9.1 × 10−10 A/mm. This work demonstrated dual-gate floating metal and multi-gate floating metal (MGFM) AlGaN/GaN metal oxide semiconductor high-electron-mobility transistors (MOS-HEMTs) with
    state-of the-art figure of merit (FOM) for two inter-gate spacings (IGSs; i.e., 0.25 and 0.5 µm). The three-terminal off-state breakdown voltage of 425 V with a low specific on-resistance of 0.105 mΩ·cm2 resulted in an excellent FOM of 1.8 GW/cm2 for MGFM MOS-HEMT (IGS = 0.5 µm). Qualitative/quantitative discussion was carried out to understand the improved performance metrices of MGFM MOS-HEMT by using a partially recessed field plate structure. The electric field distribution was also verified by Silvaco electric field simulation. Well-resorted high-density twodimensional electron gas and efficient gate modulation endowed MGFM MOS-HEMT with a decent maximum drain current density of 597 mA/mm, a cut-off frequency of 16 GHz, a maximum oscillation frequency of 23 GHz, and a power-added efficiency of 26.7%.

    摘要......................................................................................................................................II Abstract...............................................................................................................................IV Acknowledgements...........................................................................................................VII 誌謝 (Acknowledgments in Traditional Chinese)..........................................................VII Contents .............................................................................................................................. IX Table captions………………………………………………………………………….…XII Figure Captions………………………………………………………………………….XIII CHAPTER 1: INTRODUCTION…………………………………………………….…1 1.1 Background……………………………………………………………………..1 1.1.1 Lattice Scattering…………………………………………………....4 1.1.2 Ionized impurity Scattering………………………………………....5 1.2 Motivation………………………….…………………………………………...5 1.3 References……………………………………………………………………12 CHAPTER 2: AlGaN/GaN CRYSTAL FOR HIGH ELECTRON MOBILITY TRANSISTOR(HEMT)………………………………...………………..………18 2.1 Properties of Group III-Nitrides Heterostructures…………………..…..…….18 2.2 Carrier Concentration in semiconductor……………………………………....19 2.2.1 Doping……………………………………………………….……....20 2.2.2 Polarization………………………………………………………….23 2.2.2.1 Spontaneous Polarization………………………………….23 2.2.2.2 Piezoelectric polarization………………………………….25 2.3 Polarization Effect and Formation two-dimensional electron gas (2DEG)……28 2.3.1 Mechanism of the formation of Two- Dimensional Electron Gas……28 2.4 Brief Introduction of AlGaN/ GaN based High Electron Mobility (HEMT) Transistor………………………………………………………………………..…29 2.5 References…………………………………………………………..…………31 CHAPTER 3: DC PERFORMANCE IMPROVEMENT OF NANOCHANNEL AlGaN/ AlN/ GaN HEMTS WITH REDUCED OFF-STATE LEAKAGE CURRENT BY POST-GATE ANNEALING MODULATION 3.1 Introduction…………………………………………………………………….33 3.2 Experimental Details…………………………………………………………...35 3.2.1 AlGaN/GaN Nanochannel HEMT fabrication…………………….…35 3.3 Results and Discussions……………………………………………………….38 3.3.1 TEM and AFM Characteristics………………………………………38 3.3.2 SIMS Characteristics…………………………………………….......40 3.4 Electrical characteristics for different nanochannel HEMT before and after PGA treatment at 400 °C………………………………………………………………..41 3.4.1 Positive shifting of VTH and Improvement of DC Characteristics in AlGaN/AlN/GaN NC-HEMT with PGA Modulation……………………..41 3.4.2 Reduction in Off-state leakage current in AlGaN/AlN/GaN NC-HEMT with PGA Modulation……………………………………………………...48 3.4.3 Enhancement of IDMAX and reduction in Dit’s in AlGaN/AlN/GaN NCHEMT for channel width (WNC) 800 nm with PGA Modulation…………..51 3.4.4. Variation of VTH, IDMAX and IG with nanochannel width for NC-HEMT and c-HEMT before and after PGA treatment……………………………..53 3.4.5. Reduction of current collapse in NC-HEMT (WNC=400 nm) after PGA treatment………………………………………………………………….54 3.4.6 Benchmarking of the GaN-based HEMTs for different structures with reduced IG and improved SBH by post gate annealing treatment at (300 ~ 400 °C)…………………………………………………………………………55 3.5 Summary……………………………………………………………………….56 3.6 References……………………………………………………………………...57 CHAPTER 4: COMBINED IMPLICATIONS OF UV/O3 INTERFACE MODULATION WITH HfSiOX SURFACE PASSIVATION ON AlGaN/ AlN/ GaN MOS-HEMT 4.1 Introduction………………………………………………………………...….63 4.2 Experimental Details……………………………………………………….......65 4.2.1 AlGaN/AlN/GaN MOS-HEMT Fabrication with HfSiOX Surface passivation and UV/O3 surface treatment………………………………….65 4.3 Results and Discussions………………………………………………………..67 4.3.1. TEM and AFM Characteristics………………………………………67 4.3.2. X-ray photoelectron spectroscopy Characteristics………………….68 4.4 Electrical Characteristics………………………………………………………70 4.4.1 Enhancement of DC Characteristics by combined treatment of UV/O3 surface treatment and HfSiOX passivation…………………………………70 4.4.2 Reduction of interface trap density (Dit) in AlGaN/AlN/GaN MOSHEMT by combined treatment of UV/O3 surface treatment and HfSiOX passivation…………………………...…………………………………….76 4. 5 Summary………………………………………………………………………80 4.6 References…………………………………………………………………......80 CHAPTER 5: A LOW PROGRAM VOLTAGE ENABLED FLASH LIKE AlGaN/GaN STACK LAYERED MIS-HEMTS USING TRAP ASSISTED TECHNIQUE 5.1 Introduction………………………………………………………………...….86 5.2 Experimental Details………………………………………………………...…88 5.3 Results and Discussions………………………………………………………..90 5.3.1. TEM and AFM Characteristics………………………………………90 5.3.2. X-ray photoelectron spectroscopy Characteristics………………….91 5.4.1 Positive shifting of VTH and Improvement of DC Characteristics in AlGaN/GaN Flash-like HEMT with trap assisted technique………………92 5.4.2 Basic mechanism of the charge trap assisted technique for positive shifting of the VTH in Flash-like AlGaN/GaN MOS-HEMT…………..…..97 5.5 Summary……………………………………………………………………...101 5.6 References…………………………………..………………………………..102 CHAPTER 6: HIGH FIGURE OF MERIT WITH ENHANCED BREAKDOWN FIELD IN AlGaN/GaN MOS-HEMTS BY EMPLOYING DUAL-GATE AND MULTI-GATE FLOATING METAL STRUCTURAL ENGINEERING 6.1 Introduction……………………………………………………………..…...106 6.2 Experimental Details………………………………………………………....108 6.3 Results and Discussions………………………………………………………110 6.3.1. SEM and TEM Characteristics……………………………………..110 6.3.2 Improvement of DC Characteristics in AlGaN/GaN Dual-gate (DG) and Multi-gate (MG) MOS-HEMT………………………………………...…111 6.4 Improvement of VBR and FOM……………………………………………...116 6.4.1 High Figure of Merit (FOM) and Enhancement of Breakdown Voltage(VBR) in AlGaN/GaN Multi-gate (MG) MOS-HEMT…………….116 6.4.2 Comparison of HF & RF Characteristics in AlGaN/GaN Dual-gate (DG) and Multi-gate (MG) MOS-HEMT……………………………………….122 6.5 Summary……………………………………………………………………...126 6.6 References……………………………………………………………………128 CHAPTER 7: CONCLUSION………………………………………….…………..…. 134 CHAPTER 8: FUTURE WORK……………………………………………………….135 Table Captions Table1-1 Comparison of semiconductor material properties Comparison. ................3 Table 2-1 Polarization parameters of group III Nitride…………………………………....24 Table 3-1 Comparison between NC-HEMTs with different WNC and c-HEMT after PGA treatment. (WNC = 800 nm)…………………………………………………………….….52 Table 3-2 Reduction of IG with improved ∆SBH after PGA modulation @ (300~400) °c for various structured GaN based HEMTs…………………………………...………........55 TABLE 4-1. Comparison MOS-HEMT and c-HEMT with different conditions.............79 TABLE 5-1. Comparison of electrical performances of different charge trapped MIS-HEMT with different gate..............................................................................................................100 Table 6-1: Comparison of the DC characteristics of different structures MOS-HEMT with different IGS……………………………………………………………………………125 TABLE 6-2. Comparison of the VBR and FOM of different structures with 0.5 µm IGS_MGFM MOS-HEMT.................................................................................................126 Figure Captions Figure 1-1 In 2011 trends in the number of ITRS transistors ……………………………...2 Figure 2-1 Structure of N-faced (a) and G-faced (b) GaN with polarity and charge……..18 Figure 2-2 Direction diagram of AlGaN/ GaN polarization effect……………………….27 Figure 2-3 Polarization effect of AlGaN/ GaN heterojunction simulation…………….28 Figure 2-5 Schematic diagram of two dimensional electron gas (2DEG) formation mechanism………………………………………………………………………………...29 Figure 3-1. (a) Schematic illustration and (b) schematic cross-section of NC-HEMT…...37 Figure 3-2. (a) Cross-sectional HRTEM image of NC-HEMT (WNC = 200 nm) (b) before PGA and (c) after PGA at 400 °C. (d) AFM image and AFM profile of NC-HEMT (e) before PGA and (f) after PGA at 400 °C. (g) SEM image of NC-HEMT (WNC = 200 nm)………………………………………………………………………………….……...38 Figure 3-3. SIMS atomic concentration depth profile of AlGaN/AlN/GaN NC-HEMT (a) without PGA and with PGA treatment at (b) 300 °C, (c) 400 °C, and (d) 500°C…………..40 Figure 3-4. (a) Comparison of transfer characteristics. (b) Normalized ID vs VD characteristics and (c) subthreshold characteristics at VD = 4 V of NC-HEMT with different channel width compared with c-HEMT with and without PGA treatment at 400 °C………43 Figure 3-5. Comparison of (a) transconductance (GM) at VD = 4 V and (b) IDMAX–VD (@ VG = 3 V) & (c) IDS–VD (@VG = 0 V) characteristics of c-HEMT and NC-HEMT before and after PGA treatment……………………………………………………..…………46 Figure 3-6. Comparison of (a) drift velocity with gate bias and (b) GM,INT vs VG of NCHEMT (WNC= 800 nm and 200 nm) before and after PGA treatment………….47 Figure 3-7. Comparison of (a) forward and reverse gate leakage (IG) current. Comparison of (b) SBH, and (c) IG vs VG in linear scale for c-HEMT and NC-HEMT with different channel width before and after PGA treatment………………………….…..49 Figure 3-8. (a) Comparison of drain current–voltage (ID–VD) characteristics after PGA treatment of NC-HEMT (WNC = 800 nm) normalized by the effective channel width of 42.5 µm & c-HEMT. (b) Comparison of C–V measurements for c-HEMT & NC-HEMT (WNC = 800 nm)……………………………………………………………………………….....51 Figure 3-9. Comparison of (a) threshold voltages and maximum drain currents and (b) threshold voltages and gate leakage current (@-12 V) for NC-HEMTs with different channel width and c-HEMT with and without PGA effect.……………………...53 Figure 3-10. Comparison of pulsed ID vs VD characteristics (@ VG = - 3 V ∼ 3 V) of NCHEMT with channel width of 400 nm (a) before PGA and (b) after PGA at 400 °C……….54 Figure 4-1. Schematic diagram of conventional HEMT (a) without UV/O3 treatment and HfSiO X passivation, (b) with UV/O3 treatment and without HfSiOX passivation, and (c) with UV/O3 and HfSiOX passivation. Schematic diagram of MOS-HEMT (d) without and (e) with HfSiOX passivation…………………………….……………………………….66 Figure 4-2. (a) TEM image of the ultraviolet-ozone (UV/O3) treated HfSiOX MOS-HEMT. (b) EDX line scan of the HfSiOX…………………………………………………………67 Figure 4-3. AFM image of the SiO2 MOS-HEMT (a) without UV/O3 treatment and HfSiOX passivation, (b) with UV/O3 treatment and without HfSiOX passivation and (c) with UV/O3 treatment and HfSiOX passivation………………………………………………68 Figure 4-4. X-ray photoelectron spectroscopy (XPS) measurements of the Ga 3d core levels in (a) without UV/O3 treatment and (b) with UV/O3 treated GaN MOS-HEMT…………...69 Figure 4-5. Comparison of drain current-voltage (ID-VD) characteristics of (a) C-HEMT (before and after UV/O3 treatment and passivation) and (b) MOS-HEMT with and without HfSiOX passivation…………………………………………………………………..70 Figure 4-6. Comparison of transfer characteristics (ID-VG) (@ VD = 4V) of (a) C-HEMT (before and after UV/O3 treatment and HfSiOX passivation) and (b) MOS-HEMT with and without HfSiOX passivation………………………………………………………….72 Figure 4-7. Comparison of (a) subthreshold (@ VD = 4V) and reversed gate leakage (IG-VG) characteristics, (b) forward gate leakage characteristics in linear scale of C-HEMT (before and after UV/O3 treatment) and MOS-HEMT with HfSiOX passivation……………….….73 Figure 4-8. Comparison of (a) hysteresis characteristics (VD = 6V) of C-HEMT (before and after UV/O3 treatment) and MOS-HEMT with HfSiOX passivation…….75 Figure 4-9. Comparison of pulsed ID-VD characteristics of UV/O3 treated C-HEMT (a) after & (b) before HfSiOX passivation and MOS-HEMT (c) after & (d) before HfSiOX passivation…………………………………………………………………………………76 Figure 4-10. Comparison of C-V characteristics of C-HEMT (a) with & without UV/O3 treatment, and (b) MOS-HEMT with & without HfSiOX passivation. (c) Flicker noise characteristics of MOS-HEMT with & without HfSiOX passivation and C-HEMT without any treatment……………………………………………………………………………77 Figure 5-1. Schematic cross-section of the flash like MIS-HEMTs (a) after & (b) before programmed………………………………………………………………………………..89 Figure 5-2. TEM image of the MIS-HEMT (a) without UV/O3 [inset: colour mapping of (i) Ga, (ii) O, and (iii) N] & (b) with UV/O3 treatment [inset: colour mapping of (iv) Ga, (v) O, and (vi) N]. EDX line spectra of SiO2/GAN interface of the MIS-HEMTs (e) without UV/O3 & (f) with UV/O3 treatment………………………………………………………..90 Figure 5-3. X-ray photoelectron spectroscopy (XPS) analysis of Ga 3d core levels in (a) without and (b) with UV/O3 surface treatment of Al2O3/SiO2 MIS-HEMT……..91 Figure 5-4. Comparison of transfer characteristics (ID–VG) (@ VD = 4 V) of conventional HEMT and Al2O3/SiO2 MIS-HEMT before and after applying program voltage (VP, 3 V).............................................................................................................93 Figure 5-5. Comparison of subthreshold characteristics (@ VD = 4 V) of conventional HEMT and Al2O3/SiO2 MIS-HEMT before and after applying program voltage (VP, 3 V)............................................................................................................94 Figure 5-6. Comparison of drain current characteristics (ID–VD) of (a) Al2O3/SiO2 MISHEMT after applying program voltage (VP, 3 V) and (b) conventional HEMT…………......................................................................................................................................95 Figure 5-7. Comparison of gate leakage characteristics (IG–VG) of conventional HEMT and Al2O3/SiO2 MIS-HEMT before and after applying program voltage (VP, 3 V)…………….....................................................................................................................................96 Figure 5-8. Comparison of capacitance-voltage characteristics (@ 1 MHz) of Al2O3/SiO2 MIS-HEMT before & after applying program voltage (VP, 3 V) and back to initial state by applying VG = -8V and (b) conventional HEMT with and without UV/O3 treatment….................................................................................................................…..98 Figure 5-9. Schematic energy band diagram of Al2O3/SiO2/AlGaN/GaN MIS-HEMTs at different gate bias. (a) VG = 0 V, virgin state (b) VG = 3 V, programmed state (charge trapping), and (c) VG = -8 V erased state (charge de-trapping)……..99 Figure 6-1. Schematic diagram of the (a) multi-gate, (b) dual gate and (c) single gate MOSHEMT with integrate spacing (IGS)……………………………………………………109 Figure 6-2. SEM images of the DGFM MOS-HEMT with inter gate spacing of (a) 0.25 µm & (b) 0.50 µm and MGFM MOS-HEMT with inter gate spacing of (c) 0.25 µm & (d) 0.50 µm……………………………………………………………………………………................…110 Figure 6-3. (a) TEM image of the cross-sectional view and (b) enlarged view of the HfO2 MGFM MOS-HEMT…………………………………………………………………….............111 Figure 6-4. Comparison of (a) Transfer, (b) IG–VG, and SS characteristics ID-VD characteristics of planar, DGFM, and MGFM MOS-HEMTs (IGS = 0.25 μm)…………113 Figure 6-5. Comparison of (a) Transfer and (b) ID-VD characteristics of MGFM MOSHEMT for two IGS (0.25 µm & 0.5 µm)………………………………………………….114 Figure 6-6. Comparison of CV characteristics of (a) planar, DGFM, MGFM MOS-HEMTs and (b) 0.5 µm FP MOS-HEMT………………………………………………………….116 Figure 6-7. Comparison of (a) Breakdown characteristics and (b) E-field simulation of planar, DGFM, and MGFM for two IGS (0.25 & 0.5 µm)………………………………..118 Figure 6-8. Comparison of Electric field mapping of (a) Planar, (b) DGFM and (c) MGFM MOS-HEMTs with IGS of 0.25 µm………………………………………………..…….120 Figure 6-9. Comparison of (a) Breakdown characteristics and (b) E-field simulation of 0.5 µm Field plate MOS-HEMT……………………………………............………………………121 Figure 6-10. Comparison of High frequency characteristics (a) planar, DGFM and MGFM MOS-HEMT with IGS of 0.50 µm and (b) 0.5 µm Field plate MOS-HEMT……………................................................................................................................................123 Figure 6-11. Comparison of RF power characteristics of planar, DGFM and MGFM MOSHEMT with IGS of 0.50 µm…………………………………………………………...….124 Figure 8-1. Schematic diagram of the (a) Dual surface treated the stack layer MOS-HEMT, (b) T-gate MOS-HEMT, (c) Integrated T- gate NC-MOS-HEMT……………....137

    1 References
    [1] ITRS, “International Technology Roadmap for Semiconductors,” Int. Technol. roadmap Semicond., 2011.
    [2] S. Firoz, R. K. Chauhan, and C. Engineering, “Comparision of AlGaN/GaN and AlGaAs / GaAs based HEMT device under doping consideration,” Int. J. Adv. Eng. Technol., vol. 1,11 no. 2, pp. 12–19, 2011.
    [3] O. Ambacher et al., “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222–3233, 1999.
    [4] J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole
    doping in wide-band-gap uniaxial semiconductor heterostructures,” Science (80)., vol. 327, no. 5961, pp. 60–64, 2010.
    [5] S. Das Sarma and E. H. Hwang, “Screening and transport in 2D semiconductor systems at low temperatures,” Sci. Rep., vol. 5, pp. 1–20, 2015.
    [6] P. Javorka, “Fabrication and Characterization of AlGaN / GaN High Electron Mobility Transistors,” Dissertation, p. 127, 2004.
    [7] S. Kasap and Capper, “Electrical Con,” pp. 19–45, 2006.
    [8] Jun L, Lei Z S, Han M M, Bin H, Lei Y X, Cheng Z J, Hua M X and Yue H 2015 Trap
    states induced by reactive ion etching in AlGaN/GaN high-electron-mobility transistors Chin. Phys. B 24 117305-1–5.
    [9] Mahajan S S, Malik A, Laishram R and Vinayak S 2017 Performance enhancement of gate-annealed AlGaN/GaN HEMTs J. Kor. Phys. Soc. 70 533–8
    [10] Liu L, Xi Y, Ahn S, Ren F, Gila B P, Pearton S J and Kravchenko I I 2014 Characteristics of gate leakage current and breakdown voltage of AlGaN/GaN high electron mobility transistors after postprocess annealing J. Vac. Sci. Technol. B 32 1–5.
    [11] Lee N H et al 2014 Effects of various surface treatment on gate leakage, subthreshold slope, and current collapse in AlGaN/GaN high-electron-mobility transistors Japan. J. ppl. Phys. 53 1–5
    [12] Ganguly S, Verma J, Hu Z, Xing H and Jena D 2014 Performance enhancement of InAlN/GaN HEMTs by KOH surface treatment Appl. Phys. Express 7 1–3.12
    [13] Lin Y S, Lain Y W and Hsu S S H 2010 AlGaN/GaN HEMTs with low leakage current and high on/off current ratio IEEE Electron Device Lett. 31 102–4.
    [14] Lu W, Kumar V, Schwindt R, Piner E and Adesida I 2002 A comparative study of surface passivation on AlGaN/GaN HEMTs Solid State Electron. 46 1441–4
    [15] Yue Y, Hao Y, Zhang J, Ni J, Mao W, Feng Q and Liu L 2008 AlGaN/GaN MOS-HEMT with HfO2 dielectric and Al2O3 interfacial passivation layer grown by atomic layer deposition IEEE Electron Device Lett. 29 838–40
    [16] Sheu J K, Su Y K, Chi G C, Jou M J and Chang C M 1998 Effects of thermal
    annealing on the indium tin oxide Schottky contacts of n-GaN Appl. Phys. Lett. 72 3317–9
    [17] Lee J, Liu D, Kim H and Lu W 2004 Post-annealing effects on device performance of AlGaN/GaN HFETs Solid State Electron. 48 1855–9
    [18] Lu X, Jiang H, Liu C, Zou X and Lau K M 2016 Off-state leakage current reduction in AlGaN/GaN high electron mobility transistors by combining surface treatment and postgate annealing Semicond. Sci. Technol. 31 1–7
    [19] Arulkumaran, S. Surface passivation effects in AlGaN/GaN HEMTs on high-resistivity Si substrate In Proceedings of the 2007 International Workshop on Physics of Semiconductor Devices, IWPS, Mumbai, India, 16–20 December 2007; pp. 317–322.
    [20] Eller, B.S.; Yang, J.; Nemanich, R.J. Electronic surface and dielectric interface states on GaN and AlGaN. J. Vac. Sci. Technol. A 2013, 31, 050807.
    [21] Jussila, H.; Mattila, P.; Oksanen, J.; Perros, A.; Riikonen, J.; Bosund, M.; Varpula, A.; Huhtio, T.; Lipsanen, H.; Sopanen, M. High-k GaAs metal insulator semiconductor capacitors passivated by ex-situ plasma-enhanced atomic layer deposited AlN for fermi-level unpinning. Appl. Phys. Lett. 2012, 100, 071606.
    [22] Passlack, M.; Hong, M.; Mannaerts, J.P. Quasistatic and high frequency capacitancevoltage characterization of Ga2O3-GaAs structures fabricated by in-situ molecular beam epitaxy. Appl. Phys. Lett. 1996, 68, 1099–1101.
    [23] Park, S.; Kim, S.Y.; Choi, Y.; Kim, M.; Shin, H.; Kim, J.; Choi, W. Interface properties
    of atomic-layer-deposited Al2O3 thin films on ultraviolet/ozone-treated multilayer MoS2 crystals. ACS Appl. Mater. Interfaces 2016, 8, 11189–11193.
    [24] Smith, L.L.; King, S.W.; Nemanich, R.J.; Davis, R.F. Cleaning of GaN surfaces. J.
    Electron. Mater. 1996, 25, 805–810.
    [25] Bradley, S.T.; Goss, S.H.; Hwang, J.; Schaff, W.J.; Brillson, L.J. Surface cleaning and
    annealing effects on Ni/AlGaN interface atomic composition and schottky barrier height. Appl. Phys. Lett. 2004, 85, 1368–1370.
    [26] Kim, K.; Ryu, J.H.; Kim, J.; Cho, S.J.; Liu, D.; Park, J.; Lee, I.-K.; Moody, B.; Zhou,
    W.; Albrecht, J.; et al. Band-bending of Ga-polar GaN interfaced with Al2O3 through
    ultraviolet/ozone treatment. ACS Appl. Mater. Interfaces 2017, 9, 17576–17585.
    [27] Choi, J.H.; Cho, C.H.; Cha, H.Y. Design consideration of high voltage Ga2O3 vertical Schottky barrier diode with field plate. Results Phys. 2018, 9, 1170–1171.
    [28] Liu, X.; Low, E.K.F.; Pan, J.; Liu, W.; Teo, K.L.; Tan, L.S.; Yeo, Y.C. Impact of in situ
    vacuum anneal and SiH4 treatment on electrical characteristics of AlGaN/GaN metal-oxidesemiconductor high-electron mobility transistors. Appl. Phys. Lett. 2011, 99, 093504.
    [29] Kim, K.; Liu, D.; Gong, J.; Ma, Z. Reduction of leakage current in GaN Schottky diodes through ultraviolet/ozone plasma treatment. IEEE Electron. Device Lett. 2019, 40, 1796– 1799.
    [30] Kim, K.; Kim, T.J.; Zhang, H.; Liu, D.; Jung, Y.H.; Gong, J.; Ma, Z. AlGaN/GaN
    schottky-gate HEMTs with UV/O3-treated gate interface. IEEE Electron. Device Lett. 2020, 41, 1488–1491.
    [31] Arulkumaran, S.; Egawa, T.; Ishikawa, H.; Jimbo, T.; Sano, Y. Surface passivation
    effects on AlGaN/GaN high-electron-mobility transistors with SiO2, Si3N4, and silicon oxynitride. Appl. Phys. Lett. 2003, 84, 613–615.
    [32] Javorka, P.; Bernat, J.; Fox, A.; Marso, M.; Lüth, H.; Kordoš, P. Influence of SiO2 and Si3N4 passivation on AlGaN/GaN/Si HEMT performance. Electron. Lett. 2003, 39, 1155– 1157.
    [33] Huang, S.; Jiang, Q.; Yang, S.; Zhou, C.; Chen, K.J. Effective passivation of
    AlGaN/GaN HEMTs by ALD-grown AlN thin film. IEEE Electron. Device Lett. 2012, 33, 516–518.
    [34]Lin, Y.S.; Lin, S.F.; Hsu, W.C. Microwave and power characteristics of AlGaN/GaN/Si high-electron mobility transistors with HfO2 and TiO2 passivation. Semicond. Sci. Technol. 2015, 30, 015016.
    [35] Li, S.; Hu, Q.; Wang, X.; Li, T.; Li, X.; Wu, Y. Improved interface properties and
    dielectric breakdown in recessed AlGaN/GaN MOS-HEMTs using HfSiOX as gate dielectric. IEEE Electron. Device Lett. 2019, 40, 295–298.
    [36] Chan, S.H.; Tahhan, M.; Liu, X.; Bisi, D.; Gupta, C.; Koksaldi, O.; Li, H.; Mates, T.;
    Denbaars, S.P.; Keller, S. Metalorganic chemical vapor deposition and characterization of (Al,Si)O dielectrics for GaN-based devices. Jpn. J. Appl. Phys. 2016, 55, 021501.
    [37] Karim, Z.; Boissiere, O.; Lohe, C.; Zhang, Z.; Manke, C.; Lehnen, P.; Baumann, P.K.;
    Dalton, J.; Park, W.; Ramanathan, S.; et al. Advanced metal gate electrode options
    compatible with ALD and AVD®HfSiOx based gate dielectrics. ECS Trans. 2006, 3, 363– 374.
    [38] Yang, W.; Fronk, M.; Geng, Y.; Chen, L.; Sun, Q.Q.; Gordan, O.D.; Zhou, P.; Zahn,
    D.R.; Zhang, D.W. Optical properties and bandgap evolution of ALD HfSiOx films.
    Nanoscale Res. Lett. 2015, 10, 1–5.
    [39] T. Oka and T. Nozawa, “AlGaN/GaN MIS-Gate HFET with high threshold voltage normally-off operation for power electronics applications.” IEEE Electron Device Lett., 29,15 668 (2008).
    [40] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T.
    Tanaka, and D. Ueda, “Gate injection transistor (GIT)—A normally-off AlGaN/ GaN power transistor using conductivity modulation.” IEEE Trans. Electron Devices, 54, 3393 (2007).
    [41] C. H. Wu, P. C. Han, Q. H. Luc, C. Y. Hsu, T. E. Hsieh, H. C. Wang, Y. K. Lin, P. C.
    Chang, Y. C. Lin, and E. Y. Chang, “Normally-OFF GaN MIS-HEMT With F-Doped Gate Insulator using standard ion implantation.” IEEE J. Electron Devices Soc., 6, 893 (2011). [42] M. Kanamura, T. Ohki, T. Kikakawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara,“Enhancement-mode GaN MIS-HEMTs with n/GaN/i-AlN/n-GaN triple cap layer and highk gate dielectrics.” IEEE Electron Device Lett., 31, 189 (2010).
    [43] A. Basu, V. Kumar, and I. Idesida, “Study of fluorine bombardment on the electrical properties of AlGaN/GaN heterostructures.” J. Vacuum Sci. Technol. B, 25, 2607 (2007).
    [44] L. Jun, Z. S. Lei, M. M. Han, H. Bin, Y. X. Lei, Z. J. Cheng, M. X. Hua, and H. Yue,
    “Trap states induced by reactive ion etching in AlGaN/GaN high- electron mobility
    transistors.” Chin. Phys. B, 24, 117305 (2015).
    [45] Z. Gao, B. Hou, Y. Liu, and X. Ma, “Impact of fluorine plasma treatment on
    AlGaN/GaN high electronic mobility transistors by simulated and experimental results.” Microelectron. Eng., 154, 22 (2016).
    [46] B. Lee, C. Kirkpatrick, Y. H. Choi, X. Yang, A. Q. Huang, and V. Misra, “Normally-off AlGaN/GaN MOSHFET using ALD SiO2 tunnel dielectric and ALD HfO2 charge storage layer for power device application.” Phys. Status Solidi C, 9, 868 (2012).
    [47] B. Hou et al., “0.9-A/mm, 2.6-V flash-like normally-off Al2O3/AlGaN/GaN
    MISHEMTs using charge trapping technique.” IEEE Electron Device Lett., 39, 397
    (2018).
    [48] B. Lee, C. Kirkpatrick, X. Yang, S. Jayanti, R. Suri, J. Roberts, and V. Misra, “Normally off AlGaN/GaN-on-Si MOSHFETs with TaN floating gates and ALD
    SiO2 tunnel dielectrics.” IEDM Tech. Dig., 484 (2010).
    [49] C. Kirkpatrick, B. Lee, Y. Choi, A. Huang, and V. Misra, “Threshold voltage
    stability comparison in AlGaN/GaN FLASH MOS-HFETs utilizing charge trap or
    floating gate charge storage.” Phys. Status Solidi C, 9, 864 (2011).
    [50] V. Joshi, B. Shankar, S. P. Tiwari and M. Shrivastava, “Dependence of Avalanche
    Breakdown on Surface & Buffer Traps in AlGaN/GaN HEMTs,” 2017 International
    Conference on Simulation of Semicon. Process. and Devices (SISPAD), pp.109-112, 2017. DOI: 10.23919/sispad.2017.8085276
    [51] S. Makino, S. Ohi, J. T. Asubar, H. Tokuda, and M. Kuzuhara, “Effect of Metal
    Electrode Edge Irregularities on Breakdown Voltages of AlGaN/GaN HEMTs,” IEEE
    International Meeting for Future of Electron Devices, Kansai, July 2016. DOI:
    10.1109/imfedk.2016.7521698
    [52] S. L. Selvaraj, T. Suzue, and T. Egawa, “Breakdown Enhancement of AlGaN/GaN HEMTs on 4-in Silicon by Improving the GaN Quality on Thick Buffer Layers,” IEEE Electron Device Lett, vol. 30, no. 6, pp. 587-589, 2009. DOI: 10.1109/LED.2009.2018288
    [53] M. Wang and K. J. Chen, “Improvement of the Off-State Breakdown Voltage with Fluorine Ion Implantation in AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 58, no. 2, pp. 460-464, Feb. 2011. DOI: 10.1109/TED.2010.2091958
    [54] K. H. Cho, Y. H. Choi, J. Lim, and M. K. Han, “Increase of Breakdown Voltage on
    AlGaN/GaN HEMTs by Employing Proton Implantation,” IEEE Trans. Electron Devices, vol. 56, no. 3, pp. 365-369, Mar. 2009.DOI: 10.1109/TED.2008.2011931
    [55] C. Yang, X. Luo, A. Zhang, S. Deng, D. Ouyang, F. Peng, J. Wei, B. Zhang, Z. Li,
    “AlGaN/GaN MIS-HEMT with AlN Interface Protection Layer and Trench Termination Structure,” IEEE Trans. Electron Devices, vol. 65, no. 11, pp. 5203 – 5207, Nov. 2018. DOI: 10.1109/TED.2018.2868104
    [56] J. Ma and E. Matioli, “Slanted Tri-Gates for High-Voltage GaN Power Devices,” IEEE Electron Device Lett., vol. 38, no. 9, pp. 1305-1308, Sep 2017. DOI:
    10.1109/LED.2017.2731799
    [57] I. Sanyal, E. S. Lin, Y. C. Wan, K. M. Chen, P. T. Tu, P. C. Yeh, and J. I. Chyi,
    “AlInGaN/GaN HEMTs with High Johnson’s Figure-of-Merit on Low Resistivity Silicon Substrate,” IEEE J. Electron Device Soc., vol. 9, no. 9, pp. 130-136, Dec. 2020. DOI: 10.1109/JEDS.2020.3043279
    [58] M. W. Ha, S. C. Lee, J. C. Her, K. S. Seo and M. K. Han, “AlGaN/GaN High-ElectronMobility Transistor Employing an Additional Gate for High-Voltage Switching Applications,” Jpn. J. Appl. Phys., vol. 44, no. 9A, pp. 6385-6388, 2005. DOI: 10.1143/JJAP.44.6385
    2. REFERENCES
    [1] O. Ambacher B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy,
    A.J. Sierakowski, W. J. Schaff, and L. F. Eastman, R. Dimitrov, A. Mitchell, and M.
    Stutzmann, “Two dimensional electron gases induced by spontaneous and
    piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J.
    Appl. Phys., vol. 87, no. 1, pp. 334–344, 2000
    [2] B. Van Zeghbroeck, “Density of states.” 2011.
    [3] C. Concentrations, “Mass action law ( electronics ).” pp. 4–6.
    [4] O. Ambacher et al., “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, no. 1, pp. 334–344, 2000.
    [5] M. E. Aumer, S. F. LeBoeuf, B. F. Moody, and S. M. Bedair, “Strain-induced
    piezoelectric field effects on light emission energy and intensity from
    AlInGaN/InGaN quantum wells,” Appl. Phys. Lett., vol. 79, no. 23, pp. 3803–3805,
    2001.
    [6] F. Sacconi, A. Di Carlo, P. Lugli, and H. Morkoç, “Spontaneous and piezoelectric
    polarization effects on the output characteristics of AlGaN/GaN heterojunction
    modulation doped FETs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 450–457,
    2001.
    [7] M. Asif Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, and J. Carter, “Observation of
    a two-dimensional electron gas in low pressure metalorganic chemical vapor
    deposited GaN-Al/sub x/Ga/sub 1-x/N heterojunctions,” Appl. Phys. Lett. Phys. Lett., vol. 60, no. 24, pp. 3027–3029, 1992.
    [8] M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm, and M. S. Shur,
    “Microwave performance of a 0 . 25 μm gate AlGaN / GaN heterostructure field effect32 transistor Microwave performance effect transistor of a 0 . 25 pm gate AIGaN / GaN heterostructure,” vol. 1121, no. 1994, pp. 6–9, 2011.
    3 REFERENCES
    [1] L. Ardaraviˇcius, A. Matulionis, J. Liberis, O. Kiprijanovic, M. Ramonas, L. F. Eastman, J. R. Shealy and A. Vertiatchikh “Electron drift velocity in AlGaN/GaN channel at high electric fields”, Appl. Phys. Lett., 83, pp. 4038–4040, 2003.
    [2] F. A. Ponce and D. P. Bour “Nitride-based semiconductors for blue and green lightemitting devices”, Nature, 386, pp. 351–359, 1997.
    [3] S. Strite and H. Morkoc “GaN, AIN, and InN: a review”, J. Vac. Sci. Technol. B, 10, pp. 1237–1266, 1992.
    [4] S. K. Yang, S. Mazumder, Z. G. Wu and Y. H. Wang “Performance enhancement in N2 plasma modified AlGaN/AlN/GaN MOS-HEMT using HfAlOX gate dielectric with Γ- shaped gate engineering”, Materials, 14, pp. 1–12, 2021.
    [5] O. Ambacher et al., “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures”, J. Phys.: Condens. Matter, 14, pp. 3399–3434, 2002.
    [6] S. Mazumder, S. H. Li, Z. G. Wu and Y. H. Wang “Combined implications of UV/O3 interface modulation with HfSiOX surface passivation on AlGaN/AlN/GaN MOS-HEMT, Crystals, 11, pp. 1–10, 2021.
    [7] K. J. Chen, O. Häberlen, A. Lidow, C. L. Tsai, T. Ueda, Y. Uemoto and Y. Wu, “GaN-onSi power technology: devices and applications”, IEEE Trans. Electron Devices, 64, pp. 779– 795, 2017.
    [8] U. K. Mishra, P. Parikh and Y. F. Wu, “AlGaN/GaN HEMTs—an overview of device
    operation and applications”, Proc. IEEE, 90, pp. 1022–1031, 2002.
    [9] M. A. Khan, Q. Chen, C. J. Sun, J. W. Yang, M. Blasingame, M. S. Shur and H. Park“Enhancement and depletion mode GaN/AlGaN heterostructure field effect transistors”,Appl. Phys. Lett., 68, Art. No. 514, 1995.
    [10] X. Hu, G. Simin, J. Yang, M. A. Khan, R. Gaska and M. S. Shur “Enhancement mode AlGaN/GaN HFET with selectively grown pn junction gate”, Electron. Lett., 36, pp. 1–2, 2000.
    [11] V. Kumar, A. Kuliev, T. Tanaka, Y. Otoki and I. Adesid, “High transconductance
    enhancement-mode AlGaN/GaN HEMTs on SiC substrate”, Electron. Lett. 39, pp. 1–2, 2003.
    [12] Y. Cai, Y. Zhou, K. J. Chen and K. M. Lau, “High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment”, IEEE Electron Device Lett., 26, pp. 435–437, 2005.
    [13] C. Ostermaier et al., “Ultrathin InAlN/AlN barrier HEMT with high performance in normally off operation”, IEEE Electron Device Lett., 30, pp. 1030–1032, 2009.
    [14] J. Wei, S. Liu, B. Li, X. Tang, Y. Lu, C. Liu, M. Hua, Z. Zhang, G. Tang and K. J. Chen,
    “Enhancement-mode GaN double-channel MOS-HEMT with low on-resistance and robust gate recess”, IEDM Tech. Dig., Vol. 9, No. 4, pp. 1–4, 2015.
    [15] L. Yuan, H. Chen, Q. Zhou, C. Zhou and K. J. Chen, “A novel normally-off gan power tunnel junction FET”, Proc. 23rd Inter. Symp. on Power Semicon. Devices & IC’s pp 276– 279, 2011.
    [16] Z. Wang, J. Cao, F. Wang, W. Chen, B. Zhang, S. Guo and Y. Yao, “Proposal of a novel enhancement type AlGaN/GaN HEMT using recess-free field coupled gate”, Super lattice Microstruct., 122, pp. 343–348, 2018.
    [17] S. Huang et al, “High uniformity normally-OFF GaN MIS-HEMTs fabricated on ultrathin-barrier AlGaN/GaN heterostructure”, IEEE Electron Device Lett., 37, pp. 1617–1620, 2016.
    [18] Z. Wang, “Proposal of a novel recess-free enhancement-mode AlGaN/GaN HEMT with field-assembled structure: a simulation study”, J. Comput. Electron., 18, pp. 1251–1258, 2019.
    [19] B. Lu, E. Matioli and T. Palacios, “High uniformity tri-gate normally-off gan power MISFET”, IEEE Electron Device Lett., 33, pp. 360–362, 2012.
    [20] Y. Zhang, A. Zubair, Z. Liu, M. Xiao, J. Perozek, Y. Ma and T. Palacios, “GaN FinFETs and trigate devices for power and RF applications: review and perspective”, Semicond. Sci. Technol., 36, Art. No. 3601–3624, 2020.
    [21] K. Ohi and T. Hashizume “Drain current stability and controllability of threshold voltage and subthreshold current in a multi-mesa-channel AlGaN/GaN high electron mobility transistor”, Japan. J. Appl. Phys., 48, pp. 1–5, 2009.
    [22] S. Liu et al.,“Enhancement-mode operation of nanochannel array (NCA) AlGaN/GaN HEMTs”, IEEE Electron Device Lett., 33, pp. 354–356, 2012.
    [23] L, Nela, M, Zhu, J, Ma and E. Matioli “High-performance nanowire-based E-mode power GaN MOSHEMTs with large work-function gate metal”, IEEE Electron Device Lett., 40, pp. 439–442, 2019.
    [24] L. Jun, Z. S. Lei, M. M. Han, H. Bin, Y. X. Lei, Z. J. Cheng, M. X. Hua and H. Yue
    “Trap states induced by reactive ion etching in AlGaN/GaN high-electron-mobility
    transistors”, Chin. Phys. B, 24, Art. No. 117305, pp. 1–5, 2015.
    [25] S. S. Mahajan, A. Malik, R. Laishram and S. Vinayak, “Performance enhancement of gate-annealed AlGaN/GaN HEMTs”, J. Kor. Phys. Soc., 70, pp. 533–538, 2017.
    [26] L. Liu, Y. Xi, S. Ahn, F Ren, B. P. Gila, S. J. Pearton and I. I. Kravchenko,
    “Characteristics of gate leakage current and breakdown voltage of AlGaN/GaN high electron mobility transistors after postprocess annealing”, J. Vac. Sci. Technol. B, 32, pp. 1–5, 2014.
    [27] N. Q. Zang, B. Moran, S. P. Denbaars, U. K. Mishra, X. W. Wang and T. P. Ma, IEEE
    IEDM, 01, No. 589, 2001.
    [28] N. H. Lee et al., Effects of various surface treatment on gate leakage, subthreshold slope, and current collapse in AlGaN/GaN high-electron-mobility transistors”, Japan. J. Appl. Phys., 53, pp. 1–5, 2014.
    [29] S. Ganguly, J. Verma, Z. Hu, H. Xing and D. Jena, “Performance enhancement of InAlN/GaN HEMTs by KOH surface treatment”, Appl. Phys. Express, 7, pp. 1–3, 2014.
    [30] Y. S. Lin, Y. W. Lain and S. S. H. Hsu, “AlGaN/GaN HEMTs with low leakage current and high on/off current ratio”, IEEE Electron Device Lett., 31, pp. 102–104, 2010.
    [31] W. Lu, V. Kumar, R. Schwindt, E. Piner and I. Adesida I, “A comparative study of
    surface passivation on AlGaN/GaN HEMTs”, Solid State Electron., 46, pp. 1441–1444, 2002.
    [32] Y. Yue, Y. Hao, J. Zhang, J. Ni, W. Mao, Q. Feng and L. Liu, “AlGaN/GaN MOS-HEMT with HfO2 dielectric and Al2O3 interfacial passivation layer grown by atomic layer deposition”, IEEE Electron Device Lett., 29, pp. 838–840, 2008.
    [33] J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou and C. M. Chang, “Effects of thermal annealing on the indium tin oxide Schottky contacts of n-GaN”, Appl. Phys. Lett., 72, Art. No. 3317, 1998.
    [34] J. Lee, D. Liu, H. Kim and W. Lu, “Post-annealing effects on device performance of AlGaN/GaN HFETs”, Solid State Electron,. 48, Art. No.1855, 2004
    [35] X. Lu, H. Jiang, C. Liu, X. Zou and K. M. Lau, “Off-state leakage current reduction in AlGaN/GaN high electron mobility transistors by combining surface treatment and post-gate annealing”, Semicond. Sci. Technol,. 31, pp. 1–7, 2016.
    [36] Z. Wang, L. Li and Y. Yao, “A machine learning-assisted model for GaN ohmic contacts regarding the fabrication processes”, IEEE Trans. Electron Devices, 68, pp. 2212–2219, 2021.
    [37] J. Ma and E. Matioli, “High performance tri-gate GaN power MOSHEMTs on silicon substrate”, IEEE Electron Device Lett., 38, pp. 367–370, 2017.61
    [38] S. Zhou, B. Cao and S. Liu, “Optimized ICP etching process for fabrication of oblique GaN sidewall and its application in LED”, Appl. Phys. A, 105, pp. 369–377, 2011.
    [39] Z. Lin, H. Kim, J. Lee and W. Lu, “Thermal stability of Schottky contacts on strained AlGaN/GaN heterostructures”, Appl. Phys. Lett., 84, Art. No. 1585, 2004.
    [40] A. J. Suria, A. S. Yalamarthy, T. A. Heuser, A. Bruefach, C. A. Chapin, H. So and D. G. Senesky, “Thickness engineering of atomic layer deposited Al2O3 films to suppress interfacial reaction and diffusion of Ni/Au gate metal in AlGaN/GaN HEMTs up to 600 ◦C in air”, Appl. Phys. Lett., 110, Art. No. 253505, 2017.
    [41] M. Whiteside, S. Arulkumaran, Y. Dikme, A. Sandupatla and G. I. Ng, “Demonstration of AlGaN/GaN MISHEMT on Si with low-temperature epitaxy grown AlN dielectric gate”, Electronics, 9, pp. 1–8, 2020.
    [42] M. A. Alsharef, .R Granzner and F. Schwierz, “Theoretical investigation of trigate AlGaN/GaN HEMTs”, IEEE Trans. Electron Devices, 60, pp. 3335–3341, 2013.
    [43] K. Ren, Y. C. Liang and C. F. Huang, “Physical mechanism of fin-gate AlGaN/GaN MIS-HEMT: Vth model”, WiPDA 2016–4th IEEE Work. Wide Bandgap Power Devices Appl., pp. 319–323, 2016.
    [44] Y. Cai, Y. Zhou, K. M. Lau and K. J. Chen, “Enhancement-mode AlGaN/GaN HEMTs with low on-resistance and low knee-voltage”, IEEE Trans. Electron., Vol. E89-C, No. 7, pp. 1025–1030, 2006.
    [45] K. S. Im, C. H. Won, Y. W. Jo, J. H. Lee, M. Bawedin, S. Cristoloveanu and J. H. Lee,
    “High-performance GaN-based nanochannel FinFETs with/without AlGaN/GaN
    heterostructure”, IEEE Trans. Electron Devices, 60, pp. 3012–3018, 2013.
    [46] M. Azize and T. Palacios, “Top-down fabrication of AlGaN/GaN nanoribbons”, Appl. Phys. Lett., 98, Art. No. 042103, 2011.
    [47] M. Zhang, X. H. Ma, M. H. Mi, Y. L. He, B. Hou, J. X. Zheng, Q. Zhu, L. X. Chen, P. Zhang and L. Yang, “Improved on-state performance of AlGaN/GaN Fin-HEMTs by
    reducing the length of the nanochannel”, Appl. Phys. Lett., 110, Art. No. 193502, 2017.
    [48] H. Y. Liu, W. C. Ou and W. C. Hsu, “Investigation of post oxidation annealing effect on H2O2-Grown Al2O3/AlGaN/GaN MOSHEMTs”, IEEE J. Electron. Devices Soc., 4, pp. 358– 364, 2016.
    [49] S. Mazumder, P. Pal, T. J. Tsai, P. C. Lin and Y. H. Wang, “A low program voltage
    enabled flash like AlGaN/GaN stack layered MIS-HEMTs using trap assisted technique”, ECS J. Solid State Sci. Technol., 10, pp. 1–7, 2021.
    [50] C. Y. Chien, W. H. Wu, Y. H. You, J. H. Lin, C. Y. Lee, W. C. Hsu, C. H. Kuan and R.
    M. Lin, “Breaking through the multi-mesa-channel width limited of normally off GaN HEMTs through modulation of the via-hole-length”, Nanoscale Res. Lett., 12, pp. 1–5, 2017.
    [51] S. M. Sze and K. N. Ng, “Physics of Semiconductor Devices”, 3rd ed. (New York: Wiley), 2007.
    [52] H. Kim, J. Lee, D. Liu andv. Lu, “Gate current leakage and breakdown mechanism in unpassivated AlGaN/GaN high electron mobility transistors by post-gate annealing”, Appl. Phys. Lett., 86, Art. No. 143505, 2005.
    [53] M. Matys et al., “Enhancement of channel electric field in AlGaN/GaN multinanochannel high electron mobility transistors”, J. Appl. Phys., 124, Art. No. 224502, 2018.
    [54] K. Ohi, J. T. Asubar, K. Nishiguchi and T. Hashizume, “Current stability in multi-mesachannel AlGaN/GaN HEMTs”, IEEE Trans. Electron Devices, 60, pp. 2997–3004, 2013.
    [55] W. L. Kalb and B. Batlogg, “Calculating the trap density of states in organic field-effect transistors from experiment: a comparison of different methods”, Phys. Rev. B, 81, pp. 1–13, 2010.
    [56] Q. Zhou, L. Liu, A. Zhang, B. Chen, Y. Jin, Y. Shi, Z. Wang, W. Chen and B. Zhang,
    “7.6 V threshold voltage high-performance normally-off Al2O3/GaN MOSFET achieved by interface charge engineering”, IEEE Electron Device Lett., 37, pp. 165–168, 2016.
    [57] R. Wang, P. Saunier, Y. Tang, T. Fang, X. Gao, S. Guo, G. Snider, P. Fay, D. Jena and
    H. Xing, “Enhancement-mode InAlN/AlN/GaN HEMTs with 10-12 A/mm leakage current and 1012 on/off current ratio”, IEEE Electron Device Lett., 32, pp. 309–311, 2011.
    [58] G. Zhou, Z. Wan, G. Yang, Y. Jiang, R. Sokolovoskij, H. Yu and G. Xia, “Gate leakage suppression and breakdown voltage enhancement in p-GaN HEMTs using metal/graphene gates”, IEEE Trans. Electron Devices, 67, pp. 875–880, 2020.
    4 REFERENCE
    [1]M. Borga, M. Meneghini, D.Benazzi; E. Canato, R. Püsche, J. Derluyn, I. Abid, F.
    Medjdoub, G. Meneghessoa, E. Zanoni, “Buffer breakdown in GaN-on-Si HEMTs: A
    comprehensive study based on a sequential growth experiment”, Microelectron. Reliab., 100–101, 2019, pp.1–5.
    [2] L. Ardaraviˇcius, A. Matulionis, J. Liberis, O. Kiprijanovic, M. Ramonas, L.F. Eastman, J.R. Shealy, A. Vertiatchikh, “Electron drift velocity in AlGaN/GaN channel at high electric fields”, Appl. Phys. Lett., 83, 2003, pp. 4038–4040.
    [3] S. Mazumder, Y.H. Wang, “Investigation of HfSiOX passivation effect on AlGaN/GaN HEMT”, Proceedings of the 2020 International Symposium on Devices, Circuits and Systems (ISDCS), Howrah, India, March 2020; pp. 1–4.
    [4] Y. Hori, Z. Yatabe, T. Hashizume, “Characterization of interface states in
    Al2O3/AlGaN/GaN structures for improved performance of high-electron-mobility
    transistors”, J. Appl. Phys. 114, pp. 244503-244512, 2013.
    [5] S. Arulkumaran, “Surface passivation effects in AlGaN/GaN HEMTs on high-resistivity Si substrate”, Proceedings of the 2007 International Workshop on Physics of Semiconductor Devices, IWPS, Mumbai, India, pp. 317–322, Dec 2007.
    [6] B.S. Eller, J. Yang, R.J. Nemanich, “Electronic surface and dielectric interface states on GaN and AlGaN”, J. Vac. Sci. Technol. A, 31, 050807, 2013.
    [7] H. Jussila, P. Mattila, J. Oksanen, A. Perros, J. Riikonen, M. Bosund, A. Varpula, T.
    Huhtio, H. Lipsanen, M. Sopanen, “High-k GaAs metal insulator semiconductor
    capacitors passivated by ex-situ plasma-enhanced atomic layer deposited AlN for fermilevel unpinning”, Appl. Phys. Lett. 100, Art. No. 071606, 2012.
    [8] M. Passlack, M. Hong, J.P. Mannaerts, “Quasistatic and high frequency capacitancevoltage characterization of Ga2O3-GaAs structures fabricated by in-situ molecular beam epitaxy”, Appl. Phys. Lett. 68, Art. No.1099, 1996.
    [9] S. Park, S.Y. Kim, Y. Choi, M. Kim, H. Shin, J. Kim, W. Choi, “Interface properties of atomic-layer-deposited Al2O3 thin films on ultraviolet/ozone-treated multilayer MoS2 crystals”, ACS Appl. Mater. Interfaces, 8, pp. 11189–11193, 2016.
    [10] L.L. Smith, S.W. King, R.J. Nemanich, R.F. Davis, “Cleaning of GaN surfaces”, J.
    Electron. Mater., Vol. 25, 1996, pp. 805–810.
    [11] S.T. Bradley, S.H. Goss, J. Hwang, W.J. Schaff, L.J. Brillson, “Surface cleaning and
    annealing effects on Ni/AlGaN interface atomic composition and schottky barrier height”, Appl. Phys. Lett., 85, Art. No. 1368, 2004.
    [12] K.Kim, J.H. Ryu, J. Kim, S.J. Cho, D. Liu, J. Park, I.K. Lee, B. Moody, W. Zhou, J.
    Albrecht et al., “Band-bending of Ga-polar GaN interfaced with Al2O3 through
    ultraviolet/ozone treatment”, ACS Appl. Mater. Interfaces, 9, pp. 17576–17585, 2017.
    [13] J.H. Choi, C.H. Cho, H.Y. Cha, “Design consideration of high voltage Ga2O3 vertical Schottky barrier diode with field plate”, Results Phys., 9, pp. 1170–1171, 2018.
    [14] X. Liu, E.K.F. Low, J. Pan, W. Liu, K.L. Teo, L.S. Tan, Y.C. Yeo, “Impact of in situ
    vacuum anneal and SiH4 treatment on electrical characteristics of AlGaN/GaN metaloxide-semiconductor high-electron mobility transistors”, Appl. Phys. Lett., 99, Art. No. 093504, 2011.
    [15] K.Kim, D. Liu, J. Gong, Z. Ma, “Reduction of leakage current in GaN Schottky diodes through ultraviolet/ozone plasma treatment”, IEEE Electron. Device Lett., 40, pp. 1796– 1799, 2019.
    [16] K. Kim, T.J. Kim, H. Zhang, D. Liu, Y.H. Jung, J. Gong, Z. Ma, “AlGaN/GaN
    schottky-gate HEMTs with UV/O3-treated gate interface”, IEEE Electron. Device Lett., 41, pp. 1488–1491, 2020.
    [17] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, Y. Sano, “Surface passivation
    effects on AlGaN/GaN high-electron-mobility transistors with SiO2, Si3N4, and silicon oxynitride”, Appl. Phys. Lett., 84, Art. No. 613, 2003.
    [18] P. Javorka, J. Bernat, A. Fox, M. Marso, H. Lüth, P. Kordoš, “Influence of SiO2 and Si3N4 passivation on AlGaN/GaN/Si HEMT performance”, Electron. Lett., 39, pp. 1155– 1157, 2003.
    [19]S. Huang, Q. Jiang, S. Yang, C. Zhou, K.J. Chen, “Effective passivation of AlGaN/GaN HEMTs by ALD-grown AlN thin film”, IEEE Electron. Device Lett., 33, pp. 516–518, 2012.
    [20]Y.S. Lin, S.F. Lin, W.C. Hsu, “Microwave and power characteristics of AlGaN/GaN/Si high-electron mobility transistors with HfO2 and TiO2 passivation”, Semicond. Sci. Technol., 30, Art. No. 015016, 2015.
    [21] S. Li, Q. Hu, X. Wang, T. Li, X. Li, Y. Wu, “Improved interface properties and dielectric breakdown in recessed AlGaN/GaN MOS-HEMTs using HfSiOx as gate dielectric”, IEEE Electron. Device Lett., 40, pp. 295–298, 2019.
    [22] S.H. Chan, M. Tahhan, X. Liu, D. Bisi, C. Gupta, O. Koksaldi, H. Li, T. Mates, S.P.
    Denbaars, S. Keller, “Metalorganic chemical vapor deposition and characterization of (Al,Si)O dielectrics for GaN-based devices”, Jpn. J. Appl. Phys., 55, Art. No. 021501, 2016.
    [23]Z. Karim, O. Boissiere, C. Lohe, Z. Zhang, C. Manke, P. Lehnen, P.K. Baumann, J.
    Dalton, W. Park, S. Ramanathan et al., “Advanced metal gate electrode options85
    compatible with ALD and AVD®HfSiOx based gate dielectrics”, ECS Trans., 3, pp. 363– 374, 2006.
    [24]W. Yang, M. Fronk, Y. Geng, L. Chen, Q.Q. Sun, O.D. Gordan, P. Zhou, D.R. Zahn,
    D.W. Zhang, “Optical properties and bandgap evolution of ALD HfSiOx films”,
    Nanoscale Res. Lett., 10, pp. 1–5, 2015.
    [25] B. Hou, X. Ma, J.Zhu, L. Yang, W. Chen, M. Mi, Q. Zhu, L. Chen, R. Zhang, M. Zhang et al., “0.9-A/mm, 2.6-V flash-like normally-off Al2O3/AlGaN/GaN MIS-HEMTs using charge trapping technique”, IEEE Electron. Device Lett., 39, pp. 397–400, 2018.
    [26]Y.Y. Zheng, H. Yue, Z.J. Cheng, F. Qian, N.J. Yu, M.X. Hua, “A study on Al2O3
    passivation in GaN MOS-HEMT by pulsed stress”, Chin. Phys. B, 17, Art. No. 1405,
    2008.
    [27] Y.S. Lin, S.F. Lin, “Large-signal linearity and high-frequency noise of passivated
    AlGaN/GaN high-electron mobility transistors”, Micromachines, 12, pp. 1–7, 2021.
    [28]T. Kikkawa, M. Nagahara, N. Okamoto, Y. Tateno, Y. Yamaaguchi, N. Hara, K. Joshin, P.M. Asbeck, “Surface-charge controlled AlGaN/ GaN-power HFET without current collapse and Gm dispersion”, IEDM Tech. Dig, 8, No. 585, 2001.
    [29]Y. Cai, Y. Zhou, K.M. Lau, K.J. Chen, “Enhancement-mode AlGaN/GaN HEMTs with low on-resistance and low knee voltage”, IEEE Trans. Electron., Vol. E89-C, No. 7, pp. 1025–1030, 2006.
    [30]Y. Yue, Y. Hao, J. Zhang, J. Ni, W. Mao, Q. Feng, L. Liu, “AlGaN/GaN MOS-HEMT
    with HfO2 dielectric and Al2O3 interfacial passivation layer grown by atomic layer
    deposition”, IEEE Electron. Device Lett., 29, pp. 838–840, 2008.
    [31]M. Tapajna, J. Kuzmik, “A comprehensive analytical model for threshold voltage calculation in GaN based metal-oxide semiconductor high-electron mobility transistors”, Appl. Phys. Lett., 100, Art. No. 113509, 2012.86
    [32]W. Lu, V. Kumar, R. Schwindt, E. Piner, I. Adesida, “A comparative study of surface passivation on AlGaN/GaN HEMTs”, Solid State Electron., 46, pp. 1441–1444, 2002.
    [33] L. Liu, Y. Xi, S. Ahn, F. Ren, B.P. Gila, S.J. Pearton, I.I. Kravchenko, “Characteristics
    of gate leakage current and breakdown voltage of AlGaN/GaN high electron mobility transistors after postprocess annealing”, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 32, pp. 1–5, 2014.
    [34]M.S.P. Reddy, W.S. Park, K.S. Im, J.H. Lee, “Dual-surface modification of AlGaN/GaN HEMTs using TMAH and piranha solutions for enhancing current and 1/f-Noise Characteristics”, IEEE J. Electron. Devices Soc., 6, pp. 791–796, 2018.
    [35]H.Y. Liu, W.C. Ou, W.C. Hsu, “Investigation of post oxidation annealing effect on H2O2-grown Al2O3/AlGaN/GaN MOSHEMTs”, IEEE J. Electron. Devices Soc., 4, pp. 358–364, 2016.
    [36] S.S. Mahajan, A. Malik, R. Laishram, S. Vinayak, “Performance enhancement of gateannealed AlGaN/GaN HEMTs”, J. Kor. Phys. Soc., 70, pp. 533–538, 2017.
    [37]Y. Tingting, L. Xinyu, Z. Yingkui, L. Chengzhan, W. Ke, L. Guoguo, “Impact of
    UV/ozone surface treatment on AlGaN/GaN HEMTs”, J. Semicond., 30, Art. No. 124001, 2009.
    [38]W.L. Kalb, B. Batlogg, “Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods”, Phys. Rev. B, 81, Art. No. 035327, 2010.
    5 REFERENCES
    [1]. L. Ardaraviˇcius, A. Matulionis, J. Liberis, O. Kiprijanovic, M. Ramonas, L. F. Eastman, J. R. Shealy, and A. Vertiatchikh, “Electron drift velocity in AlGaN/GaN channel at high electric fields.” Appl. Phys. Lett., 83, pp. 4038, 2003.
    [2] S. Mazumder, S. H. Li, Z. G. Wu, and Y. H. Wang, “Combined implications of UV/ O3 interface modulation with HfSiOX surface passivation on AlGaN/AlN/GaN MOS-HEMT.”Crystals, 11, pp. 1-10, 2021.
    [3]. M. Borga, M. Meneghini, D. Benazzi, E. Canato, R. Püsche, J. Derluyn, I. Abid,
    F. Medjdoub, G. Meneghessoa, and E. Zanoni, “Buffer breakdown in GaN-on-Si
    HEMTs: A comprehensive study based on a sequential growth experiment.” Microelectron. Reliab., 100, pp. 1, 2019.
    [4] Y. Hori, Z. Yatabe, and T. Hashizume, “Characterization of interface states in
    Al2O3/AlGaN/GaN structures for improved performance of high-electron-mobility
    transistors.” J. Appl. Phys., 114, pp. 244503, 2013.
    [5] M. J. Scott, L. Fu, X. Zhang, J. Li, C. Yao, M. Sievers, and J. Wang, “Merits of gallium nitride-based power conversion.” Semicond. Sci. Technol., 28, pp. 074013, 2013.
    [6] Y. Cai, Z. Cheng, W. C. W. Tang, K. M. Lau, and K. J. Chen, “Monolithically integrated enhancement/depletion-mode AlGaN/GaN HEMT inverters and ring oscillators using CF4 plasma treatment.” IEEE Trans. Electron Devices, 53, pp. 2223, 2006.
    [7] J. J. Freedsman, T. Kubo, and T. Egawa, “High drain current density E-mode
    Al2O3/AlGaN/GaN MOS-HEMT on Si with enhanced power device figure-of-merit
    (4 × 108 V2Ω-1cm-2).” IEEE Trans. Electron Devices, 60, pp. 3079, 2013.104
    [8] S. K. Yang, S. Mazumder, Z. G. Wu, and Y. H. Wang, “Performance enhancement in N2 plasma modified AlGaN/AlN/GaN MOSHEMT using HfAlOX gate dielectric with Γ-shaped gate engineering.” Materials, 14, pp. 1-13, 2021.
    [9] T. Oka and T. Nozawa, “AlGaN/GaN MIS-Gate HFET with high threshold
    voltage normally-off operation for power electronics applications.” IEEE Electron
    Device Lett., 29, pp. 668, 2008.
    [10] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda,
    T. Tanaka, and D. Ueda, “Gate injection transistor (GIT)—A normally-off AlGaN/
    GaN power transistor using conductivity modulation.” IEEE Trans. Electron Devices, 54, pp. 3393, 2007.
    [11] C. H. Wu, P. C. Han, Q. H. Luc, C. Y. Hsu, T. E. Hsieh, H. C. Wang, Y. K. Lin, P. C.
    Chang, Y. C. Lin, and E. Y. Chang, “Normally OFF GaN MIS-HEMT With F- Doped Gate Insulator using standard ion implantation.” IEEE J. Electron Devices Soc., 6, pp. 893, 2011.
    [12] M. Kanamura, T. Ohki, T. Kikakawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara,“Enhancement-mode GaN MIS-HEMTs with n/GaN/iAlN/n-GaN triple cap layer and highk gate dielectrics.” IEEE Electron Device Lett., 31, pp. 189, 2010.
    [13] A. Basu, V. Kumar, and I. Idesida, “Study of fluorine bombardment on the electrical properties of AlGaN/GaN heterostructures.” J. Vacuum Sci. Technol. B, 25, pp. 2607, 2007.
    [14] L. Jun, Z. S. Lei, M. M. Han, H. Bin, Y. X. Lei, Z. J. Cheng, M. X. Hua, and H. Yue,
    “Trap states induced by reactive ion etching in AlGaN/GaN high- electron mobility
    transistors.” Chin. Phys. B, 24, pp. 117305, 2015.
    [15] Z. Gao, B. Hou, Y. Liu, and X. Ma “Impact of fluorine plasma treatment on AlGaN/GaN high electronic mobility transistors by simulated and experimental results.” Microelectron. Eng., 154, pp. 22, 2016.
    [16] B. Lee, C. Kirkpatrick, Y. H. Choi, X. Yang, A. Q. Huang, and V. Misra, “Normally-off105 AlGaN/GaN MOSHFET using ALD SiO2 tunnel dielectric and ALD HfO2 charge storage layer for power device application.” Phys. Status Solidi C, 9, pp. 868, 2012.
    [17] B. Hou et al., “0.9-A/mm, 2.6-V flash-like normally-off Al2O3/AlGaN/GaN
    MISHEMTs using charge trapping technique.” IEEE Electron Device Lett., 39, pp. 397, 2018.
    [18] B. Lee, C. Kirkpatrick, X. Yang, S. Jayanti, R. Suri, J. Roberts, and V. Misra, “Normallyoff AlGaN/GaN-on-Si MOSHFETs with TaN floating gates and ALD SiO2 tunnel dielectrics.”IEDM Tech. Dig., 484, 2010.
    [19] C. Kirkpatrick, B. Lee, Y. Choi, A. Huang, and V. Misra, “Threshold voltage
    stability comparison in AlGaN/GaN FLASH MOS-HFETs utilizing charge trap or
    floating gate charge storage.” Phys. Status Solidi C, 9, pp. 864, 2011.
    [20] F. Hasegawa, H. Kambayashi, J. Li, N. Ikeda, T. Nomura, S. Kato, and S. Yoshida,
    “Proposal and simulated results of normally off AlGaN/GaN HFET structure with a charged floating gate.” Phys. Status Solidi C, 6, pp. 940, 2009.
    [21] D. W. Johnson, R. T. P. Lee, R. J. W. Hill, M. H. Wong, G. Bersuker, E. L. Piner, P. D.
    Kirsch, and H. R. Harris, “Threshold voltage shift due to charge trapping in dielectric-gated AlGaN/GaN high electron mobility transistors examined in Au-free technology.” IEEE Trans. Electron Devices, 60, pp. 3197, 2013.
    [22] K. Kim, D. Liu, J. Gong, and Z. Ma, “Reduction of leakage current in GaN Schottky diodes through ultraviolet /ozone plasma treatment.” IEEE Electron Device Lett., 40, pp. 1796, 2019.
    [23] Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, “Enhancement-mode AlGaN/GaN HEMTs with low on-resistance and low knee voltage.” IEICE Trans. Electron., E89-C7, pp. 1025, 2006.
    [24] J. Zhu, X. Ma, B. Hou, M. Ma, Q. Zhu, L. Chen, L. Yang, P. Zhang, X. Zhou, and Y.
    Hao, “Comparative study on charge trapping induced vth shift for GaN-based MOS-HEMTs with and without thermal annealing treatment.” IEEE Trans. Electron Devices, 65, pp. 5343 2018.
    [25] Y. Yue, Y. Hao, J. Zhang, J. Ni, W. Mao, Q. Feng, and L. Liu, “AlGaN/GaN MOSHEMT with HfO2 dielectric and Al2O3 interfacial passivation layer grown by atomic layer deposition.” IEEE Electron Device Lett., 29, pp. 838, 2008.
    [26] L. Liu, Y. Xi, S. Ahn, F. Ren, B. P. Gila, S. J. Pearton, and I. I. Kravchenko,
    “Characteristics of gate leakage current and breakdown voltage of AlGaN/GaN high electron mobility transistors after postprocess annealing.” J. Vac. Sci. Technol. B Microelectron.
    Nanom. Struct., 32, pp. 1, 2014.
    [27] Y. Y. Zheng, H. Yue, Z. J. Cheng, F. Qian, N. J. Yu, and M. X. Hua, “A study on Al2O3 passivation in GaN MOS- HEMT by pulsed stress.” Chin. Phys. B, 17, pp. 1405, 2008.
    [28] Z. Zhang, Y. Guo, and J. Robertson, “Atomic structure and band alignment at
    Al2O3/GaN, Sc2O3/GaN and La2O3/GaN interfaces: A first-principles study.” Microelectron. Eng., 216, pp. 111039, 2019.
    [29] S. Liu, S. Yang, Z. Tang, Q. Jiang, C. Liu, M. Wang, B. Shen, and K. J. Chen,
    “Interface/border trap characterization of Al2O3/AlN/GaN metal-oxide semiconductor structures with an AlN interfacial layer.” Appl. Phys. Lett., 106, pp. 051605, 2015.
    [30] S. Huang, S. Yang, J. Roberts, and K. J. Chen, “Threshold voltage instability in
    Al2O3/GaN/AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors,’Jpn.” J. Appl. Phys., 50, pp. 110202, 2011.
    [31] P. Lagger, C. Ostermaier, and G. Pobegen, “Towards understanding the origin of threshold voltage instability of AlGaN/GaN MIS-HEMTs.” IEDM Tech. Dig., 13.1.1, 2012.
    [32] J. Zhu, B. Hou, L. Chen, Q. Zhu, L. Yang, X. Zhou, P. Zhang, X. Ma, and Y. Hao,
    “Threshold voltage shift and interface/border trapping mechanism in Al2O3/ AlGaN/GaN MOSHEMTs.” IEEE Inter. Reliab. Phys. Symp. (IRPS), P-WB1, 2018.
    6. REFERENCES
    [1] L. Ardaraviˇcius, A. Matulionis, J. Liberis, O. Kiprijanovic, M. Ramonas, L. F. Eastman, J. R. Shealy, and A. Vertiatchikh, “Electron drift velocity in AlGaN/GaN channel at high electric fields.” Appl. Phys. Lett., vol. 83, no. 19, pp. 4038-4040, 2003. DOI: 10.1063/1.1626258
    [2] M. Borga, M. Meneghini, D. Benazzi, E. Canato, R. Püsche, J. Derluyn, I. Abid, F.
    Medjdoub, G. Meneghessoa, and E. Zanoni, “Buffer breakdown in GaN-on-Si HEMTs: A comprehensive study based on a sequential growth experiment.” Microelectron. Reliab., vol. 100 -101, no. 113461, pp. 1-5, 2019. DOI: 10.1016/j.microrel.2019.113461
    [3] S. Mazumder, S. H. Li, Z. G. Wu, and Y. H. Wang, “Combined implications of UV/ O3 interface modulation with HfSiOX surface passivation on AlGaN/AlN/GaN MOS-HEMT.”Crystals, vol. 11, no. 136, pp. 1-10, 2021. DOI: 10.3390/cryst11020136
    [4] Y. Hori, Z. Yatabe, and T. Hashizume, “Characterization of interface states in
    Al2O3/AlGaN/GaN structures for improved performance of high-electron-mobility
    transistors.” J. Appl. Phys., vol. 114, no. 244503, pp. 1-8, 2013. DOI: 10.1063/1.4859576
    [5] V. Joshi, B. Shankar, S. P. Tiwari and M. Shrivastava, “Dependence of Avalanche
    Breakdown on Surface & Buffer Traps in AlGaN/GaN HEMTs,” 2017 International
    Conference on Simulation of Semicon. 2017 International Conference on Simulation of Semicon. Process. and Devices (SISPAD), pp.109-112, 2017. DOI:
    10.23919/sispad.2017.8085276
    [6] S. Makino, S. Ohi, J. T. Asubar, H. Tokuda, and M. Kuzuhara, “Effect of Metal Electrode Edge Irregularities on Breakdown Voltages of AlGaN/GaN HEMTs,” IEEE International Meeting for Future of Electron Devices, Kansai, July 2016. DOI:
    10.1109/imfedk.2016.7521698
    [7] S. L. Selvaraj, T. Suzue, and T. Egawa, “Breakdown Enhancement of AlGaN/GaN
    HEMTs on 4-in Silicon by Improving the GaN Quality on Thick Buffer Layers,” IEEE
    Electron Device Lett, vol. 30, no. 6, pp. 587- 589, 2009.
    [8] M. Wang and K. J. Chen, “Improvement of the Off-State Breakdown Voltage with Fluorine Ion Implantation in AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 58, no. 2, pp. 460-464, Feb. 2011. DOI: 10.1109/TED.2010.2091958
    [9] K. H. Cho, Y. H. Choi, J. Lim, and M. K. Han, “Increase of Breakdown Voltage on
    AlGaN/GaN HEMTs by Employing Proton Implantation,” IEEE Trans. Electron Devices, vol. 56, no. 3, pp. 365-369, Mar. 2009.DOI: 10.1109/TED.2008.2011931
    [10] C. Yang, X. Luo, A. Zhang, S. Deng, D. Ouyang, F. Peng, J. Wei, B. Zhang, Z. Li,
    “AlGaN/GaN MIS-HEMT with AlN Interface Protection Layer and Trench Termination Structure,” IEEE Trans. Electron Devices, vol. 65, no. 11, pp. 5203 – 5207, Nov. 2018.
    [11] J. Ma and E. Matioli, “Slanted Tri-Gates for High-Voltage GaN Power Devices,” IEEE Electron Device Lett., vol. 38, no. 9, pp. 1305-1308, Sep 2017.
    [12] E. Bahat-Treidel, F. Brunner, O. Hilt, E. Cho, J. Wurfl, G. Trankle “AlGaN/GaN/GaN:C Back-barrier HFETs with Breakdown Voltage of Over 1 kV and Low RON × A. IEEE Trans. Electron Devices”, vol. 57, no. 11 pp. 3050-3058, 2010. DOI: 10.1109/TED.2010.2069566
    [13] S. Jiang, Y. Cai, P. Feng, S. Shen, X. Zhao, P. Fletcher, V. Esendag, K. B. Lee, and T.
    Wang “Exploring an Approach toward the Intrinsic Limits of GaN Electronics”, ACS Appl. Mater. Interfaces, vol. 12, no. 11, pp. 12949-12954, 2020 DOI: 10.1109/ ED.2010.2069566
    [14] I. Sanyal, E. S. Lin, Y. C. Wan, K. M. Chen, P. T. Tu, P. C. Yeh, and J. I. Chyi,130
    “AlInGaN/GaN HEMTs with High Johnson’s Figure-of-Merit on Low Resistivity Silicon Substrate,” IEEE J. Electron Device Soc., vol. 9, no. 9, pp. 130-136, Dec. 2020. DOI: 10.1109/JEDS.2020.3043279
    [15] M. W. Ha, S. C. Lee, J. C. Her, K. S. Seo and M. K. Han, “AlGaN/GaN High-ElectronMobility Transistor Employing an Additional Gate for High-Voltage Switching Applications,” Jpn. J. Appl. Phys., vol. 44, no. 9A, pp. 6385-6388, 2005. DOI: 10.1143/JJAP.44.6385
    [16] Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, “Enhancement-mode AlGaN/GaN HEMTs with low on-resistance and low knee voltage.” IEICE Trans. Electron., vol. E89-C7, pp. 1025-1030, 2006. DOI: 10.1093/ietele/e89-c.7.1025
    [17] S. Mazumder, P. Pal, T. J. Tsai, P. C. Lin, and Y. H. Wang, “A Low Program Voltage
    Enabled Flash like AlGaN/GaN Stack Layered MISHEMTs Using Trap Assisted Technique.”ECS J. Solid State Sc. And Tech., vol. 10, no. 055019, pp. 1-7, 2021. DOI: 10.1149/2162- 8777/ac02a1
    [18] Y. Yue, Y. Hao, J. Zhang, J. Ni, W. Mao, Q. Feng, and L. Liu, “AlGaN/GaN MOSHEMT with HfO2 Dielectric and Al2O3 interfacial passivation layer grown by atomic layer deposition,” IEEE Electron Device Lett., vol. 29, no. 8, pp. 838–840, Aug. 2008. DOI: 10.1109/LED.2008.2000949
    [19] Huan-Chung Wang, Huan-Fu Su, Quang-Ho Luc, Ching-Ting Lee, Heng-Tung Hsu, and Edward-Yi Chang, “Improved Linearity in AlGaN/GaN HEMTs for Millimeter-Wave Applications by Using DualGate Fabrication,” ECS J. Solid State Sc. and Tech., vol. 11, pp. S3106, 2021. DOI: 10.1149/2.0251711jss
    [20] L. Liu, Y. Xi, S. Ahn, F. Ren, B. P. Gila, S. J. Pearton and I. I. Kravchenko,
    “Characteristics of gate leakage current and breakdown voltage of AlGaN/GaN high electron mobility transistors after postprocess annealing,” J. Vac. Sci. Technol. B Microelectron.
    Nanom. Struct. vol. 32, no. 052201, pp. 1-5, 2014. DOI: 10.1116/1.4891168
    [21] S. K. Yang, S. Mazumder, Z. G. Wu, and Y. H. Wang, “Performance enhancement in N2 plasma modified AlGaN/AlN/GaN MOSHEMT using HfAlOX gate dielectric with Γ- shaped gate engineering.” Materials, vol. 14, no. 1534, pp. 1-12, 2021. DOI: 10.3390/ma14061534
    [22] Md. T. Hasan, T. Asano, H. Tokuda, and M. Kuzuhara, “Current Collapse Suppression by Gate Field-Plate in AlGaN/ GaN HEMTs” IEEE Electron Device Lett., vol. 34, no. 11, pp. 1379-1381, 2013. DOI: 10.1109/LED.2013.2280712
    [23] Y. Ohno, T. Nakao, S. Kishimoto, K. Maezawa, and T. Mizutani, “Effects of surface passivation on breakdown of AlGaN/GaN highelectron-mobility transistors,” Appl. Phys. Lett., vol. 84, no. 12, pp. 2184-2186, Mar. 2004. DOI: 10.1063/1.1687983
    [24] S. Hong, A. H. S. Rana, J. W. Heo and H. S. Kim, “DC Characteristics of AlGaN/GaN HEMTs Using a Dual-Gate Structure,” J. Nano sc. and Nano tech., vol. 15, no. 10, pp. 7467-7471, 2015.
    [25] V. Adivarahan, J. Yang, A. Koudymov, G. Simin, and M. Asif Khan, “Stable CW
    operation of field-plated GaN-AlGaN MOSHFETs at 19 W/mm,” IEEE Electron Device Lett., vol. 26, no. 8, pp. 535-537, Aug. 2005. DOI: 10.1109/LED.2005.852740
    [26] H. Xing, Y. Dora, A. Chini, S. Heikman, S. Keller and U. K. Mishra, “High Breakdown Voltage AlGaN–GaN HEMTs Achieved by Multiple Field Plates,” IEEE Electron Device Lett., vol. 25, no. 4, pp. 161-163, April 2004. DOI: 10.1109/LED.2004.824845
    [27] A. Berzoy, C. R. Lashway, H. Moradisizkoohi, and Osama A. Mohammed “Breakdown Voltage Improvement and Analysis of GaN HEMTs through Field Plate Inclusion and Substrate Removal,” IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)., no. 17417591, pp. 138-142, Nov. 2017. DOI: 10.1109/WiPDA.2017.8170536132
    [28] V. Palankovski, S. Vitanov, and R. Quay, “Field-Plate Optimization of AlGaN/GaN HEMTs,” IEEE Compound Semicon. Integ. Circuit Symp., 9308703, 2006.
    [29] H. Jiang, Q. Lyu, R. Zhu, P. Xiang, K. Cheng, and K. M. Lau, “1300 V Normally-OFF p-GaN Gate HEMTs on Si with High ON-State Drain Current,” IEEE Trans. Electron Devices, vol. 68, no. 2, pp. 653-657, Feb 2021. DOI: 10.1109/TED.2020.3043213
    [30] D. Nagulapally, R. P. Joshi, and A. Pradhan, “Simulation study of HEMT structures with HfO2 cap layer for mitigating inverse piezoelectric effect related device failures,” AIP Advances, vol. 5, no. 017103, pp. 1-12, Jan 2015. DOI: 10.1063/1.4905702
    [31] W. L. Kalb, B. Batlogg, “Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods,” Phys. Rev. B, vol. 81, no. 035327, pp. 1–13, 2010. DOI: 10.1103/PhysRevB.81.035327
    [32] W. H. Wu, Y. C. Lin, P. C. Chin, C. C. Hsu, J. H. Lee, S. C. Liu, J.S. Maa, H. Iwai, E.
    Y. Chang, H. T. Hsu, “Reliability improvement in GaN HEMT power device using a field plate approach” Solid State Electronics, vol. 133, no. 64, 2017. DOI:
    10.1016/j.sse.2017.05.001
    [33] Y. F. Wu, A. Saxler, M. Moore, R. P. Smith, S. Sheppard, P. M. Chavarkar, T. Wisleder, U. K. Mishra, and P. Parikh, “30-W/mm GaN HEMTs by Field Plate Optimization,” IEEE Electron Device Lett., Vol. 25, No. 3, March 2004. DOI: 10.1109/LED.2003.822667
    [34] S. C. Binari, K. Ikossi, J. A. Roussos, W. Kruppa, D. Park, H. B. Dietrich, D. D. Koleske, A. E. Wickenden, and R. L. Henry, “Trapping Effects and Microwave Power Performance in AlGaN/GaN HEMTs,” IEEE Trans. Electron Device., vol. 48, no. 3, pp. 465-471, March 2001. DOI: 10.1109/16.906437
    [35] J. J. Freedsman, T. Kubo, and T. Egawa, “High drain current density Emode
    Al2O3/AlGaN/GaN MOS-HEMT on Si with enhanced power device figure-of-merit (4 × 108 V2 Ω-1 cm-2).” IEEE Trans. ElectronDevices, vol. 60, no. 10, pp. 3079-3083, 2013.DOI:10.1109/TED.2013.2276437
    [36] S. Kumar, S. B. Dolmanan, S. Tripathy, R. Muralidharan, and D. N. Nath, “Meandering Gate Edges for Breakdown Voltage Enhancement in AlGaN/GaN High Electron Mobility Transistors.” Physica Status Solidi a, vol. 217, no. 1900766, pp. 1-4, 2020. DOI: 10.1002/pssa.201900766
    [37] J. Ma and E. Matioli, “High Performance Tri-Gate GaN Power MOSHEMTs on Silicon Substrate” IEEE Electron Device Lett., vol. 38, no. 9, pp. 367-370, 2017. DOI:
    10.1109/LED.2017.2661755.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE