簡易檢索 / 詳目顯示

研究生: 謝宗洺
Hsieh, Tsung-Ming
論文名稱: 乙腈系電雙層電容器之高電位電解質研發
Development of High Voltage Electrolyte for Acetonitrile based Electric Double Layer Capacitors
指導教授: 鄧熙聖
Teng, Hsi-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 123
中文關鍵詞: 電雙層電容器老化高電位電解質添加劑聚偏二氟乙烯聚丙烯腈
外文關鍵詞: electric double layer capacitors, gel polymer electrolyte, high voltage
相關次數: 點閱:91下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今儲能效率和能量密度需求不斷提升,高電位的儲能元件也被研發和關注。高功率、高壽命的電雙層電容器其操作電壓主要受限於電解液成分,本研究導入聚丙烯腈(PAN)及聚偏二氟乙烯(PVDF)類的高分子型添加劑於電解液中,改善電解液在3.0 V高電位的裂解和安全性問題。
    本研究的製程簡單,加入合成好的高分子添加劑配方於一般市售電解液LE中,加熱攪拌後靜置待其膠化熟成,即形成高電位電解質GPE,有3.6 V高電位窗、4.6 x 10-3的高導離子度並優異的電化學穩定性。搭配中鋼碳素ACS25電極,直接將電解液灌入cellulose商用隔離膜組成軟包型超電容元件,經電化學測試後,GPE可穩定操作於3.0 V並且有大電容量(85 F cm-3)、優異的快速充放電性能(90% cap. retention@100 A g-1)以及高循環充放電壽命(90% cap. retention@20000 cycle)。經SEM、EDX、奈米壓痕儀分析老化後的超電容電極,GPE的電極老化後狀態完整且無明顯侵蝕和破裂的痕跡,元素組成無明顯改變,力學性質也優於LE;經氣脹分析後顯示GPE有較少的裂解氣體產生,以上結果顯示其優異的穩定性和安全性。
    超電容與鋰離子電池搭配的雙電系統應用在工具機或電動車等,有大功率輸出、低電阻及較長的使用壽命的效果。使用3.0 V超電容比起2.7 V超電容有更大的電流分配、更小的串聯電阻和較高的能量密度,更加提升雙電系統的效能,是未來儲能領域的一大躍進。

    Electric double layer capacitors (EDLCs) is widely used in energy storage devices and promising for high power density and long cycle life. Commonly used EDLCs electrolytes can only operate below 2.7 V, which greatly suppresses the energy density of the capacitors and limits their applications. In this study, we use polyacrylonitrile-based (PAN) and Polyvinylidene fluoride-based (PVDF) polymer and mix them with the commercial electrolyte (1 M TEABF4@AN) to form gel phase electrolyte (GPE). With GPE inside, the EDLCs’ potential window increases to 3.6 V, also have higher capacitance and ionic conductivity (4.65 x 10-3 S cm-1). In cycling test or voltage-holding test (floating test) under 3.0 V, the capacitance retentions of GPE are both up to 90%, where the LE are only about 60%. Higher operated potential of GPE reaches a maximum specific energy density of 19.45 kWh L-1 and specific power density of 60.83 MW L-1.
    We use SEM, EDX, nano-indenter, pressure measurement to analyze the aging level of EDLCs. GPE’s electrodes stay complete form without obvious corrosion and have lower gas products which confirm GPE’s high voltage stability. After factory test, the electrolyte GPE indeed has better electrochemical stability, which means higher capacitance retention and lower resistance increase.

    中文摘要 I 英文延伸摘要 II 致謝 XIX 總目錄 XXI 表目錄 XXV 圖目錄 XXV 第一章 緒論 1 1-1前言 1 1-2超級電容器的發展與應用 2 1-3超級電容器的儲能機制 5 1-4超級電容器的構成元件 7 1-4-1 電極材料 7 1-4-2 電解質 10 1-4-3 集電器 12 1-4-4 隔離膜(介電物質) 12 1-4-5 黏著劑 12 1-5研究動機 13 第二章 文獻回顧及理論 14 2-1 電雙層結構與原理 14 2-1-1 電雙層原理 14 2-1-2 Helmholtz電雙層模型 15 2-1-3 Stern電雙層模型 16 2-1-4 電雙層結構 17 2-2 電雙層電容器(EDLC) 18 2-2-1 電容器的儲能計算 18 2-2-2 平行板電容器 18 2-2-3 二極式電容器 20 2-3 活性碳材應用於超級電容器 21 2-4電解質的種類與發展 23 2-4-1水系電解質: 23 2-4-2有機系電解質 24 2-4-3離子液體 28 2-4-4膠固態電解質 30 2-5 超級電容器的老化機制 32 2-6 高電位超級電容器 33 2-7 聚丙烯腈(PAN)及聚偏二氟乙烯(PVDF) 37 2-8 電化學測試原理 40 2-8-1 循環伏安法(Cyclic voltammetry) 40 2-8-2 電化學充放電 41 2-8-3 交流阻抗理論 42 2-6-3.1 等效電路模擬系統 46 2-8-4 導離子度(Ionic conductivity, σ) 49 第三章 實驗方法與儀器原理介紹 51 3-1 藥品與材料 51 3-2 實驗儀器與設備 52 3-3分析儀器原理簡介 54 3-3-1 比表面積與孔隙分析儀(Brunauer-Emmet-Teller, BET) 54 3-3-1.1 BET等溫吸附模式 56 3-3-1.2密度泛函理論(Density Functional Theory, DFT) 58 3-3-2 掃描式電子顯微鏡(SEM)及能量色散X光譜分析(EDX) 62 3-3-3 拉曼光譜分析(Raman Spectrum) 64 3-3-4 奈米壓痕儀(Nano-indenter) 66 3-3-5氣脹測試製具 68 第四章 高電位電解質之研發 69 4-1 實驗步驟 69 4-1-1碳電極的製備 70 4-1-2高電位電解質的製備 71 4-1-3電容器的組裝 72 4-2結果與討論 74 4-2-1活性碳材之孔洞結構分析 74 4-2-1.1氮氣吸脫附實驗 74 4-2-1.2孔徑分布之探討 75 4-2-2 高分子型添加劑之高電位電解質 77 4-2-2.1電解液之線性伏安法分析 79 4-2-2.2超電容之循環伏安法分析 81 4-2-2.3初始持壓漏電流量測(Leakage current) 82 4-2-3不同速率放電測試 83 4-2-4循環充放電測試 85 4-2-5常溫持壓老化測試(Floating test) 86 4-2-6超電容老化程度分析 88 4-2-6.1電極老化分析 88 4-2-6.2超電容氣脹分析 93 4-2-7 鋁箔奈米壓痕力學分析 96 4-2-8 導離子度分析 99 4-2-9 交流阻抗分析 102 4-2-10 拉曼光譜分析(Raman spectroscopy) 104 4-2-11 功率密度與能量密度比較圖(Ragone plot) 106 4-3 市售3.0 V高電位電解液 107 4-4 10 F超電容罐體3.0 V,65℃實場測試 109 4-5 3.0 V 超電容的實際應用 113 第五章 結論 116 第六章 參考文獻 118

    [1] K. Jost, G. Dion, Y. Gogotsi, Textile energy storage in perspective, Journal of Materials Chemistry A, 2 (2014) 10776-10787.
    [2] R. Sharma, A. Rastogi, S. Desu, Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor, Electrochemistry Communications, 10 (2008) 268-272.
    [3] M. Mastragostino, C. Arbizzani, F. Soavi, Conducting polymers as electrode materials in supercapacitors, Solid state ionics, 148 (2002) 493-498.
    [4] L.L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes, Chemical Society Reviews, 38 (2009) 2520-2531.
    [5] J.S. Mattson, H.B. Mark, Activated carbon: surface chemistry and adsorption from solution, M. Dekker1971.
    [6] P.I. Wu, Y.T. Hsu, Y.C. Tseng, R. Subramani, Y.S. Chen, C.L. Chang, G.S. Leu, H. Teng, Mesophase Pitch-Derived Carbons with High Electronic and Ionic Conductivity Levels for Electric Double-Layer Capacitors, Acs Omega, 4 (2019) 16925-16934.
    [7] F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and Electrolytes for Advanced Supercapacitors, Adv. Mater., 26 (2014) 2219-2251.
    [8] A. Lewandowski, A. Olejniczak, M. Galinski, I. Stepniak, Performance of carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes, J. Power Sources, 195 (2010) 5814-5819.
    [9] Z. Jin, X.D. Yan, Y.H. Yu, G.J. Zhao, Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors, J. Mater. Chem. A, 2 (2014) 11706-11715.
    [10] X.R. Liu, P.G. Pickup, Ru oxide/carbon fabric composites for supercapacitors, J. Solid State Electrochem., 14 (2010) 231-240.
    [11] H.J. Wang, X.X. Sun, Z.H. Liu, Z.B. Lei, Creation of nanopores on graphene planes with MgO template for preparing high-performance supercapacitor electrodes, Nanoscale, 6 (2014) 6577-6584.
    [12] C. Feng, J.F. Zhang, Y. He, C. Zhong, W.B. Hu, L. Liu, Y.D. Deng, Sub-3 nm Co3O4 Nanofilms with Enhanced Supercapacitor Properties, Acs Nano, 9 (2015) 1730-1739.
    [13] C. Zhong, Y.D. Deng, W.B. Hu, J.L. Qiao, L. Zhang, J.J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev., 44 (2015) 7484-7539.
    [14] R.D. Rogers, G.A. Voth, Guest editorial - Ionic liquids, Acc. Chem. Res., 40 (2007) 1077-1078.
    [15] M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nat. Mater., 8 (2009) 621-629.
    [16] A. Brandt, S. Pohlmann, A. Varzi, A. Balducci, S. Passerini, Ionic liquids in supercapacitors, MRS Bull., 38 (2013) 554-559.
    [17] M. Freemantle, Designer solvents - Ionic liquids may boost clean technology development, Chem. Eng. News, 76 (1998) 32-37.
    [18] M. Galinski, A. Lewandowski, I. Stepniak, Ionic liquids as electrolytes, Electrochim. Acta, 51 (2006) 5567-5580.
    [19] A. Lewandowski, M. Galinski, Practical and theoretical limits for electrochemical double-layer capacitors, J. Power Sources, 173 (2007) 822-828.
    [20] N. Handa, T. Sugimoto, M. Yamagata, M. Kikuta, M. Kono, M. Ishikawa, A neat ionic liquid electrolyte based on FSI anion for electric double layer capacitor, J. Power Sources, 185 (2008) 1585-1588.
    [21] G.P. Pandey, S.A. Hashmi, Studies on electrical double layer capacitor with a low-viscosity ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate as electrolyte, Bull. Mater. Sci., 36 (2013) 729-733.
    [22] H. Kurig, M. Vestli, K. Tonurist, A. Janes, E. Lust, Influence of Room Temperature Ionic Liquid Anion Chemical Composition and Electrical Charge Delocalization on the Supercapacitor Properties, J. Electrochem. Soc., 159 (2012) A944-A951.
    [23] Q. Chen, X.M. Li, X.B. Zang, Y.C. Cao, Y.J. He, P.X. Li, K.L. Wang, J.Q. Wei, D.H. Wu, H.W. Zhu, Effect of different gel electrolytes on graphene-based solid-state supercapacitors, RSC Adv., 4 (2014) 36253-36256.
    [24] H.J. Fei, C.Y. Yang, H. Bao, G.C. Wang, Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes, J. Power Sources, 266 (2014) 488-495.
    [25] H. Gao, J. Li, K. Lian, Alkaline quaternary ammonium hydroxides and their polymer electrolytes for electrochemical capacitors, RSC Adv., 4 (2014) 21332-21339.
    [26] C. Ramasamy, J.P. del Vel, M. Anderson, An activated carbon supercapacitor analysis by using a gel electrolyte of sodium salt-polyethylene oxide in an organic mixture solvent, J. Solid State Electrochem., 18 (2014) 2217-2223.
    [27] C. Ramasamy, J. Palma, M. Anderson, A 3-V electrochemical capacitor study based on a magnesium polymer gel electrolyte by three different carbon materials, J. Solid State Electrochem., 18 (2014) 2903-2911.
    [28] P.M. DiCarmine, T.B. Schon, T.M. McCormick, P.P. Klein, D.S. Seferos, Donor-Acceptor Polymers for Electrochemical Supercapacitors: Synthesis, Testing, and Theory, J. Phys. Chem. C, 118 (2014) 8295-8307.
    [29] R. Yuksel, Z. Sarioba, A. Cirpan, P. Hiralal, H.E. Unalan, Transparent and Flexible Supercapacitors with Single Walled Carbon Nanotube Thin Film Electrodes, ACS Appl. Mater. Interfaces, 6 (2014) 15434-15439.
    [30] M.F. Hsueh, C.W. Huang, C.A. Wu, P.L. Kuo, H.S. Teng, The Synergistic Effect of Nitrile and Ether Functionalities for Gel Electrolytes Used in Supercapacitors, J. Phys. Chem. C, 117 (2013) 16751-16758.
    [31] C.W. Huang, C.A. Wu, S.S. Hou, P.L. Kuo, C.T. Hsieh, H.S. Teng, Gel Electrolyte Derived from Poly(ethylene glycol) Blending Poly(acrylonitrile) Applicable to Roll-to-Roll Assembly of Electric Double Layer Capacitors, Adv. Funct. Mater., 22 (2012) 4677-4685.
    [32] A.S. Ulihin, Y.G. Mateyshina, N.F. Uvarov, All-solid-state asymmetric supercapacitors with solid composite electrolytes, Solid State Ionics, 251 (2013) 62-65.
    [33] Y.H. Liu, B. Rety, C.M. Ghimbeu, B. Soucaze-Guillous, P.L. Taberna, P. Simon, Understanding ageing mechanisms of porous carbons in non-aqueous electrolytes for supercapacitors applications, J. Power Sources, 434 (2019).
    [34] F.H. Zheng, Y.X. Li, X.S. Wang, Study on effects of applied current and voltage on the ageing of supercapacitors, Electrochimica Acta, 276 (2018) 343-351.
    [35] A.M. Bittner, M. Zhu, Y. Yang, H.F. Waibel, M. Konuma, U. Starke, C.J. Weber, Ageing of electrochemical double layer capacitors, Journal of Power Sources, 203 (2012) 262-273.
    [36] P.W. Ruch, D. Cericola, A. Foelske-Schmitz, R. Kotz, A. Wokaun, Aging of electrochemical double layer capacitors with acetonitrile-based electrolyte at elevated voltages, Electrochim. Acta, 55 (2010) 4412-4420.
    [37] S. Dsoke, X. Tian, C. Taubert, S. Schluter, M. Wohlfahrt-Mehrens, Strategies to reduce the resistance sources on Electrochemical Double Layer Capacitor electrodes, J. Power Sources, 238 (2013) 422-429.
    [38] M. Tokita, N. Yoshimoto, K. Fujii, M. Morita, Degradation Characteristics of Electric Double-Layer Capacitors Consisting of High Surface Area Carbon Electrodes with Organic Electrolyte Solutions, Electrochim. Acta, 209 (2016) 210-218.
    [39] R. Tang, M. Yamamoto, K. Nomura, E. Morallon, D. Cazorla-Amoros, H. Nishihara, T. Kyotani, Effect of carbon surface on degradation of supercapacitors in a negative potential range, J. Power Sources, 457 (2020).
    [40] M. Lazzari, F. Soavi, M. Mastragostino, High voltage, asymmetric EDLCs based on xerogel carbon and hydrophobic IL electrolytes, J. Power Sources, 178 (2008) 490-496.
    [41] A. Krause, A. Balducci, High voltage electrochemical double layer capacitor containing mixtures of ionic liquids and organic carbonate as electrolytes, Electrochem. Commun., 13 (2011) 814-817.
    [42] S. Pohlmann, R.S. Kuhnel, T.A. Centeno, A. Balducci, The Influence of Anion-Cation Combinations on the Physicochemical Properties of Advanced Electrolytes for Supercapacitors and the Capacitance of Activated Carbons, Chemelectrochem, 1 (2014) 1301-1311.
    [43] X.W. Yu, D.B. Ruan, C.C. Wu, J. Wang, Z.Q. Shi, Spiro-(1,1 ')-bipyrrolidinium tetrafluoroborate salt as high voltage electrolyte for electric double layer capacitors, J. Power Sources, 265 (2014) 309-316.
    [44] K. Chiba, T. Ueda, Y. Yamaguchi, Y. Oki, F. Saiki, K. Naoi, Electrolyte Systems for High Withstand Voltage and Durability II. Alkylated Cyclic Carbonates for Electric Double-Layer Capacitors, J. Electrochem. Soc., 158 (2011) A1320-A1327.
    [45] K. Chiba, T. Ueda, Y. Yamaguchi, Y. Oki, F. Shimodate, K. Naoi, Electrolyte Systems for High Withstand Voltage and Durability I. Linear Sulfones for Electric Double-Layer Capacitors, J. Electrochem. Soc., 158 (2011) A872-A882.
    [46] A. Brandt, P. Isken, A. Lex-Balducci, A. Balducci, Adiponitrile-based electrochemical double layer capacitor, J. Power Sources, 204 (2012) 213-219.
    [47] C. Schutter, A. Bothe, A. Balducci, Mixtures of acetonitrile and ethyl isopropyl sulfone as electrolytes for electrochemical double layer capacitors, Electrochim. Acta, 331 (2020).
    [48] Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.C. Qin, Polyaniline-Coated Electro-Etched Carbon Fiber Cloth Electrodes for Supercapacitors, J. Phys. Chem. C, 115 (2011) 23584-23590.
    [49] N. Jackel, D. Weingarth, A. Schreiber, B. Kruner, M. Zeiger, A. Tolosa, M. Asian, V. Presser, Performance evaluation of conductive additives for activated carbon supercapacitors in organic electrolyte, Electrochim. Acta, 191 (2016) 284-298.
    [50] Y.C. Chen, Y.G. Lin, Y.K. Hsu, S.C. Yen, K.H. Chen, L.C. Chen, Novel Iron Oxyhydroxide Lepidocrocite Nanosheet as Ultrahigh Power Density Anode Material for Asymmetric Supercapacitors, Small, 10 (2014) 3803-3810.
    [51] G.N. Zhang, L.J. Ren, L.J. Deng, J.F. Wang, L.P. Kang, Z.H.H. Liu, Graphene-MnO2 nanocomposite for high-performance asymmetrical electrochemical capacitor, Mater. Res. Bull., 49 (2014) 577-583.
    [52] M. Huang, Y.X. Zhang, F. Li, Z.C. Wang, Alamusi, N. Hu, Z.Y. Wen, Q. Liu, Merging of Kirkendall Growth and Ostwald Ripening: CuO@MnO2 Core-shell Architectures for Asymmetric Supercapacitors, Sci. Rep., 4 (2014).
    [53] C.H. Wang, H.C. Hsu, J.H. Hu, High-energy asymmetric supercapacitor based on petal-shaped MnO2 nanosheet and carbon nanotube-embedded polyacrylonitrile-based carbon nanofiber working at 2 V in aqueous neutral electrolyte, J. Power Sources, 249 (2014) 1-8.
    [54] F.P. Zhao, Y.Y. Wang, X.N. Xu, Y.L. Liu, R. Song, G. Lu, Y.G. Li, Cobalt Hexacyanoferrate Nanoparticles as a High-Rate and Ultra-Stable Supercapacitor Electrode Material, ACS Appl. Mater. Interfaces, 6 (2014) 11007-11012.
    [55] T. Yim, K.S. Kang, J.S. Yu, K.J. Kim, M.S. Park, S.G. Woo, G. Jeong, Y.N. Jo, K.Y. Im, J.H. Kim, Y.J. Kim, Effect of acid scavengers on electrochemical performance of lithium-sulfur batteries: Functional additives for utilization of LiPF6, Jpn. J. Appl. Phys., 53 (2014).
    [56] Y.K. Li, R.X. Zhang, J.S. Liu, C.W. Yang, Effect of heptamethyldisilazane as an additive on the stability performance of LiMn2O4 cathode for lithium-ion battery, J. Power Sources, 189 (2009) 685-688.
    [57] C. Xu, S. Renault, M. Ebadi, Z.H. Wang, E. Bjorklund, D. Guyomard, D. Brandell, K. Edstrom, T. Gustafsson, LiTDI: A Highly Efficient Additive for Electrolyte Stabilization in Lithium-Ion Batteries, Chem. Mater., 29 (2017) 2254-2263.
    [58] A.S. Wotango, W.N. Su, E.G. Leggesse, A.M. Haregewoin, M.H. Lin, T.A. Zegeye, J.H. Cheng, B.J. Hwang, Improved Interfacial Properties of MCMB Electrode by 1-(Trimethylsilyl)imidazole as New Electrolyte Additive To Suppress LiPF6 Decomposition, ACS Appl. Mater. Interfaces, 9 (2017) 2410-2420.
    [59] H. Park, H. Yong, J. Jung, C. Jung, Selective Effect of Gel Polymer Electrolytes on Suppressing Decomposition and Evaporation of Electrolyte in Acetonitrile-Based Supercapacitors at Elevated Temperature, Chemelectrochem, 6 (2019) 4418-4428.
    [60] J.G. Han, K. Kim, Y. Lee, N.S. Choi, Scavenging Materials to Stabilize LiPF6-Containing Carbonate-Based Electrolytes for Li-Ion Batteries, Adv. Mater., 31 (2019).
    [61] S.H. Wang, P.L. Kuo, C.T. Hsieh, H.S. Teng, Design of Poly(Acrylonitrile)-Based Gel Electrolytes for High-Performance Lithium Ion Batteries, ACS Appl. Mater. Interfaces, 6 (2014) 19360-19370.
    [62] Y.H. Lin, R. Subramani, Y.T. Huang, Y.L. Lee, J.S. Jan, C.C. Chiu, S.S. Hou, H. Teng, Highly stable interface formation in onsite coagulation dual-salt gel electrolyte for lithium-metal batteries, J. Mater. Chem. A, 9 (2021) 5675-5684.
    [63] C.L. Chen, T.W. Chang, H.S. Teng, C.G. Wu, C.Y. Chen, Y.M. Yang, Y.L. Lee, Highly efficient gel-state dye-sensitized solar cells prepared using poly(acrylonitrile-co-vinyl acetate) based polymer electrolytes, Phys. Chem. Chem. Phys., 15 (2013) 3640-3645.
    [64] H. Akashi, K. Sekai, K. Tanaka, A novel fire-retardant polyacrylonitrile-based gel electrolyte for lithium batteries, Electrochim. Acta, 43 (1998) 1193-1197.
    [65] P. Carol, P. Ramakrishnan, B. John, G. Cheruvally, Preparation and characterization of electrospun poly(acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ion batteries, J. Power Sources, 196 (2011) 10156-10162.
    [66] P. Raghavan, J. Manuel, X. Zhao, D.S. Kim, J.H. Ahn, C. Nah, Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries, J. Power Sources, 196 (2011) 6742-6749.
    [67] Y.H. Su, Y.H. Lin, Y.H. Tseng, Y.L. Lee, J.S. Jan, C.C. Chiu, S.S. Hou, H.S. Teng, Postinjection gelation of an electrolyte with high storage permittivity and low loss permittivity for electrochemical capacitors, J. Power Sources, 481 (2021).
    [68] Y.H. Tseng, Y.H. Lin, R. Subramani, Y.H. Su, Y.L. Lee, J.S. Jan, C.C. Chiu, S.S. Hou, H.S. Teng, On-site-coagulation gel polymer electrolytes with a high dielectric constant for lithium-ion batteries, J. Power Sources, 480 (2020).
    [69] G.H. Chen, F. Zhang, Z.M. Zhou, J.R. Li, Y.B. Tang, A Flexible Dual-Ion Battery Based on PVDF-HFP-Modified Gel Polymer Electrolyte with Excellent Cycling Performance and Superior Rate Capability, Adv. Energy Mater., 8 (2018).
    [70] Y.H. Lin, R. Subramani, Y.T. Huang, Y.L. Lee, J.S. Jan, C.C. Chiu, S.S. Hou, H. Teng, Highly stable interface formation in onsite coagulation dual-salt gel electrolyte for lithium-metal batteries, J. Mater. Chem. A
    9(2021) 5675-5684.
    [71] R. Subramani, Y.H. Tseng, Y.L. Lee, C.C. Chiu, S.S. Hou, H.S. Teng, High Li+ transference gel interface between solid-oxide electrolyte and cathode for quasi-solid lithium-ion batteries, J. Mater. Chem. A, 7 (2019) 12244-12252.
    [72] C.Y. Yang, M.Q. Sun, X. Wang, G.C. Wang, A Novel Flexible Supercapacitor Based on Cross-Linked PVDF-HFP Porous Organogel Electrolyte and Carbon Nanotube Paper@pi-Conjugated Polymer Film Electrodes, ACS Sustainable Chem. Eng., 3 (2015) 2067-2076.
    [73] Allen J. Bard and Larry R. Faulkner, Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001, 2nd ed, Russ. J. Electrochem., 38 (2002) 1364-1365.
    [74] B. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 1999.
    [75] C.W. Huang, H.S. Teng, Influence of carbon nanotube grafting on the impedance behavior of activated carbon capacitors, J. Electrochem. Soc., 155 (2008) A739-A744.
    [76] J.-M.V. H. El Brouji, O. Briat, N. Bertrand, E. Woirgard, presented at 2008 IEEE Vehicle Power and Propulsion Conference, (2008).
    [77] S.C.A.C. Plancha. M. J. C., Santos. D. M. F., Polymer electrolyte, UK: Woodhead Publishing Limited, (2010).
    [78] P. Tarazona, U.M.B. Marconi, R. Evans, Phase equilibria of fluid interfaces and confined fluids: non-local versus local density functionals, Molecular Physics, 60 (1987) 573-595.
    [79] J. Landers, G.Y. Gor, A.V. Neimark, Density functional theory methods for characterization of porous materials, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 437 (2013) 3-32.
    [80] J. Jagiello, J. Kenvin, J.P. Olivier, A.R. Lupini, C.I. Contescu, Using a new finite slit pore model for NLDFT analysis of carbon pore structure, Adsorption Science & Technology, 29 (2011) 769-780.
    [81] J. Jagiello, J.P. Olivier, 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation, Carbon, 55 (2013) 70-80.
    [82] McMillan, McMillan, (1985).
    [83] McMillan, Hofmeister, (1988).
    [84] A.M. Bittner, M. Zhu, Y. Yang, H.F. Waibel, M. Konuma, U. Starke, C.J. Weber, Ageing of electrochemical double layer capacitors, J. Power Sources, 203 (2012) 262-273.
    [85] L. Garcia-Cruz, P. Ratajczak, J. Iniesta, V. Montiel, F. Beguin, Self-discharge of AC/AC electrochemical capacitors in salt aqueous electrolyte, Electrochim. Acta, 202 (2016) 66-72.
    [86] A. Bello, F. Barzegar, M.J. Madito, D.Y. Momodu, A.A. Khaleed, T.M. Masikhwa, J.K. Dangbegnon, N. Manyala, Stability studies of polypyrole- derived carbon based symmetric supercapacitor via potentiostatic floating test, Electrochim. Acta, 213 (2016) 107-114.
    [87] F.H. Zheng, Y.X. Li, X.S. Wang, Study on effects of applied current and voltage on the ageing of supercapacitors, Electrochim. Acta, 276 (2018) 343-351.
    [88] W.C. Oliver, G.M. Pharr, AN IMPROVED TECHNIQUE FOR DETERMINING HARDNESS AND ELASTIC-MODULUS USING LOAD AND DISPLACEMENT SENSING INDENTATION EXPERIMENTS, Journal of Materials Research, 7 (1992) 1564-1583.
    [89] D.M. Seo, O. Borodin, S.D. Han, Q. Ly, P.D. Boyle, W.A. Henderson, Electrolyte Solvation and Ionic Association I. Acetonitrile-Lithium Salt Mixtures: Intermediate and Highly Associated Salts, J. Electrochem. Soc., 159 (2012) A553-A565.
    [90] D.M. Seo, O. Borodin, S.D. Han, P.D. Boyle, W.A. Henderson, Electrolyte Solvation and Ionic Association II. Acetonitrile-Lithium Salt Mixtures: Highly Dissociated Salts, J. Electrochem. Soc., 159 (2012) A1489-A1500.
    [91] D.M. Seo, O. Borodin, D. Balogh, M. O'Connell, Q. Ly, S.D. Han, S. Passerini, W.A. Henderson, Electrolyte Solvation and Ionic Association III. Acetonitrile-Lithium Salt Mixtures-Transport Properties, J. Electrochem. Soc., 160 (2013) A1061-A1070.
    [92] S.D. Han, O. Borodin, J.L. Allen, D.M. Seo, D.W. McOwen, S.H. Yun, W.A. Henderson, Electrolyte Solvation and Ionic Association IV. Acetonitrile-Lithium Difluoro(oxalato)borate (LiDFOB) Mixtures, J. Electrochem. Soc., 160 (2013) A2100-A2110.
    [93] S.D. Han, O. Borodin, D.M. Seo, Z.B. Zhou, W.A. Henderson, Electrolyte Solvation and Ionic Association V. Acetonitrile-Lithium Bis(fluorosulfonyl)imide (LiFSI) Mixtures, J. Electrochem. Soc., 161 (2014) A2042-A2053.
    [94] O. Borodin, S.D. Han, J.S. Daubert, D.M. Seo, S.H. Yun, W.A. Henderson, Electrolyte Solvation and Ionic Association VI. Acetonitrile-Lithium Salt Mixtures: Highly Associated Salts Revisited, J. Electrochem. Soc., 162 (2015) A501-A510.

    無法下載圖示 校內:2026-08-10公開
    校外:2026-08-10公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE