研究生: |
張耿嘉 Chang, Geng-Jia |
---|---|
論文名稱: |
氧化鋅奈米複合結構應用於可撓式染料敏化太陽能電池之研究 Construction of ZnO Hierarchical Nanostructures for Flexible Dye-sensitized Solar Cells |
指導教授: |
吳季珍
Wu, Jih-Jen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 117 |
中文關鍵詞: | 氧化鋅 、奈米複合結構 、可撓式電極 、染料敏化太陽能電池 、膠態電解液 |
外文關鍵詞: | ZnO, nanostructure composite, flexible electrode, dye-sensitized solar cells, gel electrolyte |
相關次數: | 點閱:78 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以PET-ITO導電塑膠基板成長氧化鋅奈米複合結構,應用於可撓式染料敏化太陽能電池。本研究以室溫化學浴法整合導電塑膠基板上之氧化鋅奈米仙人掌陣列及其及頂部顆粒層,作為氧化鋅奈米複合結構電極。其中氧化鋅奈米仙人掌陣列由室溫化學浴法成長於PET-ITO基板之氧化鋅奈米柱陣列所得。而氧化鋅顆粒層為塗佈於氧化鋅奈米仙人掌陣列頂部,繼以室溫化學浴法連接顆粒與奈米仙人掌,整合成為氧化鋅奈米複合結構。此導電塑膠基板成長之氧化鋅奈米複合結構製作之可撓式染料敏化太陽能電池,不需要高溫前處理與機械高壓就能達到5.24%之效率。藉由研究太陽能電池電子傳輸與再結合之行為可進一步確認,此簡易室溫化學浴法能夠將氧化鋅顆粒間互相連接,並整合氧化鋅奈米仙人掌陣列與氧化鋅顆粒,使電子能有效收集於此氧化鋅奈米複合結構之電極。
此外,為改善液態電解液於染料敏化太陽能電池中電解液漏液及揮發之問題,本研究亦利用10wt% PVDF-HFP高分子電解液製作以奈米仙人掌/片狀結構為光陽極之太陽能電池,其效率可達4.19%。於室溫下經由1000小時測試,仍具有約3.96%之效率。最後應用此膠態電解液於可撓式染料敏化太陽能電池,其效率可達約3.53%。
In this work, zinc oxide (ZnO) hierarchical nanostructures have been synthesized on PET-ITO plastic substrates for flexible dye-sensitized solar cells (DSSCs). A room-temperature (RT) chemical integration method is developed to construct ZnO nanoarchitectured anodes, composed of a ZnO nanocactus (NC) array and a top ZnO particle (ZnO TP) film. The ZnO NC array is derived from a nanowire (NW) array on PET-ITO substrate by RT chemical bath deposition (CBD). After drop casting ZnO particles on the top of ZnO NC array, another RTCBD is conducted for integrating the NC array and the TP film. Without high-temperature post-treatment and mechanical compression, a notable efficiency of 5.24% is simply achieved in the plastic-substrate ZnO DSSC. Dynamics of recombination and electron transport measurements indicate efficient electron collection in the ZnO nanoarchitectured anodes, confirming the inter-necking of the ZnO TP film and the connection of the particle film with underneath NC array by the facile RTCBD method.
To solve the leakage and evaporation of the liquid electrolyte in DSSC, gel-state DSSC with ZnO nanocactus/nanosheet anode was fabrication in this work. The power conversion efficiency of 4.19% is achieved by using 10wt% PVDF-HFP polymer electrolyte. After 1000 h test under 25°C, the efficiency of the gel-state DSSC can retain 3.96%. Finally, a gel-state flexible DSSC was fabricated. An efficiency of 3.53% is obtained.
1. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D., Solar cell efficiency tables (version 41). Prog. Photovoltaics 2013, 21, 1-11.
2. O’regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized. Nature 1991, 353, 24.
3. Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M., Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 2011, 334, 629-34.
4. Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J., Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 2013, 6, 1739.
5. Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316-9.
6. Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.-S.; Chang, J. A.; Lee, Y. H.; Kim, H.-j.; Sarkar, A.; Nazeeruddin, M. K., Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics 2013, 7, 486-491.
7. Ellmer, K.; Klein, A.; Rech, B., Transparent conductive zinc oxide. Springer: 2008; Vol. 104.
8. Tsukazaki, A.; Ohtomo, A.; Onuma, T.; Ohtani, M.; Makino, T.; Sumiya, M.; Ohtani, K.; Chichibu, S. F.; Fuke, S.; Segawa, Y.; Ohno, H.; Koinuma, H.; Kawasaki, M., Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater. 2004, 4, 42-46.
9. Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P., Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897-9.
10. Wan, Q.; Li, Q. H.; Chen, Y. J.; Wang, T. H.; He, X. L.; Li, J. P.; Lin, C. L., Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 2004, 84, 3654.
11. Xu, S.; Qin, Y.; Xu, C.; Wei, Y.; Yang, R.; Wang, Z. L., Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366-373.
12. Hoffman, R. L.; Norris, B. J.; Wager, J. F., ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 2003, 82, 733.
13. Zhang, Q.; Dandeneau, C. S.; Zhou, X.; Cao, G., ZnO Nanostructures for Dye-Sensitized Solar Cells. Adv. Mater. 2009, 21, 4087-4108.
14. Listorti, A.; O’Regan, B.; Durrant, J. R., Electron Transfer Dynamics in Dye-Sensitized Solar Cells. Chem. Mat. 2011, 23, 3381-3399.
15. Grätzel, M., Photoelectrochemical cells. Nature 2001, 414, 338-344.
16. Tiwana, P.; Docampo, P.; Johnston, M. B.; Snaith, H. J.; Herz, L. M., Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells. ACS nano 2011, 5, 5158-5166.
17. Xu, F.; Sun, L., Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solar cells. Energy Environ. Sci. 2011, 4, 818.
18. Gonzalez-Valls, I.; Lira-Cantu, M., Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ. Sci. 2009, 2, 19.
19. Anta, J. A.; Guillén, E.; Tena-Zaera, R., ZnO-Based Dye-Sensitized Solar Cells. J. Phys. Chem. C 2012, 116, 11413-11425.
20. Memarian, N.; Concina, I.; Braga, A.; Rozati, S. M.; Vomiero, A.; Sberveglieri, G., Hierarchically Assembled ZnO Nanocrystallites for High-Efficiency Dye-Sensitized Solar Cells. Angewandte Chemie 2011, 123, 12529-12533.
21. Cheng, H.-M.; Hsieh, W.-F., High-efficiency metal-free organic-dye-sensitized solar cells with hierarchical ZnO photoelectrode. Energy Environ. Sci. 2010, 3, 442.
22. Saito, M.; Fujihara, S., Large photocurrent generation in dye-sensitized ZnO solar cells. Energy Environ. Sci. 2008, 1, 280.
23. Yoshida, T.; Zhang, J.; Komatsu, D.; Sawatani, S.; Minoura, H.; Pauporté, T.; Lincot, D.; Oekermann, T.; Schlettwein, D.; Tada, H.; Wöhrle, D.; Funabiki, K.; Matsui, M.; Miura, H.; Yanagi, H., Electrodeposition of Inorganic/Organic Hybrid Thin Films. Adv. Funct. Mater. 2009, 19, 17-43.
24. Chen, L.-Y.; Yin, Y.-T., The influence of length of one-dimensional photoanode on the performance of dye-sensitized solar cells. J. Mater. Chem. 2012, 22, 24591.
25. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P., Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455-9.
26. Xu, C.; Wu, J.; Desai, U. V.; Gao, D., Multilayer assembly of nanowire arrays for dye-sensitized solar cells. J. Am. Chem. Soc. 2011, 133, 8122-5.
27. Xu, C.; Shin, P.; Cao, L.; Gao, D., Preferential growth of long ZnO nanowire array and its application in dye-sensitized solar cells. J. Phys. Chem. C 2009, 114, 125-129.
28. Xu, C.; Gao, D., Two-Stage Hydrothermal Growth of Long ZnO Nanowires for Efficient TiO2 Nanotube-Based Dye-Sensitized Solar Cells. J. Phys. Chem. C 2012, 116, 7236-7241.
29. Lin, C.-Y.; Lai, Y.-H.; Chen, H.-W.; Chen, J.-G.; Kung, C.-W.; Vittal, R.; Ho, K.-C., Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode. Energy Environ. Sci. 2011, 4, 3448.
30. Shi, Y.; Zhu, C.; Wang, L.; Li, W.; Cheng, C.; Ho, K. M.; Fung, K. K.; Wang, N., Optimizing nanosheet-based ZnO hierarchical structure through ultrasonic-assisted precipitation for remarkable photovoltaic enhancement in quasi-solid dye-sensitized solar cells. J. Mater. Chem. 2012, 22, 13097.
31. Hosono, E.; Fujihara, S.; Honma, I.; Zhou, H., The Fabrication of an Upright‐Standing Zinc Oxide Nanosheet for Use in Dye‐Sensitized Solar Cells. Adv. Mater. 2005, 17, 2091-2094.
32. Lai, Y.-H.; Lin, C.-Y.; Chen, H.-W.; Chen, J.-G.; Kung, C.-W.; Vittal, R.; Ho, K.-C., Fabrication of a ZnO film with a mosaic structure for a high efficient dye-sensitized solar cell. J. Mater. Chem. 2010, 20, 9379.
33. Xu, F.; Dai, M.; Lu, Y.; Sun, L., Hierarchical ZnO Nanowire− Nanosheet Architectures for High Power Conversion Efficiency in Dye-Sensitized Solar Cells. J. Phys. Chem. C 2010, 114, 2776-2782.
34. Jiang, C. Y.; Sun, X. W.; Lo, G. Q.; Kwong, D. L.; Wang, J. X., Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl. Phys. Lett. 2007, 90, 263501.
35. Wu, C.-T.; Wu, J.-J., Room-temperature synthesis of hierarchical nanostructures on ZnO nanowire anodes for dye-sensitized solar cells. J. Mater. Chem. 2011, 21, 13605.
36. Ko, S. H.; Lee, D.; Kang, H. W.; Nam, K. H.; Yeo, J. Y.; Hong, S. J.; Grigoropoulos, C. P.; Sung, H. J., Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 2011, 11, 666-71.
37. Chen, W.; Qiu, Y.; Yang, S., A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2010, 12, 9494-501.
38. Chiu, W.-H.; Lee, C.-H.; Cheng, H.-M.; Lin, H.-F.; Liao, S.-C.; Wu, J.-M.; Hsieh, W.-F., Efficient electron transport in tetrapod-like ZnO metal-free dye-sensitized solar cells. Energy Environ. Sci. 2009, 2, 694.
39. McCune, M.; Zhang, W.; Deng, Y., High efficiency dye-sensitized solar cells based on three-dimensional multilayered ZnO nanowire arrays with "caterpillar-like" structure. Nano Lett. 2012, 12, 3656-62.
40. Shi, Y.; Zhan, C.; Wang, L.; Ma, B.; Gao, R.; Zhu, Y.; Qiu, Y., Polydisperse Spindle-Shaped ZnO Particles with Their Packing Micropores in the Photoanode for Highly Efficient Quasi-Solid Dye-Sensitized Solar Cells. Adv. Funct. Mater. 2010, 20, 437-444.
41. Shi, Y.; Dong, H.; Wang, L.; Zhan, C.; Gao, R.; Qiu, Y., Controlled synthesis of ZnO spindles and fabrication of composite photoanodes at low temperature for quasi-solid state dye-sensitized solar cells. J. Mater. Chem. 2011, 21, 3183.
42. Ku, C.-H.; Wu, J.-J., Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells. Appl. Phys. Lett. 2007, 91, 093117.
43. Yodyingyong, S.; Zhang, Q.; Park, K.; Dandeneau, C. S.; Zhou, X.; Triampo, D.; Cao, G., ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells. Appl. Phys. Lett. 2010, 96, 073115.
44. Wu, C.-T.; Liao, W.-P.; Wu, J.-J., Three-dimensional ZnO nanodendrite/nanoparticle composite solar cells. J. Mater. Chem. 2011, 21, 2871.
45. Ku, C.-H.; Wu, J.-J., Chemical bath deposition of ZnO nanowire–nanoparticle composite electrodes for use in dye-sensitized solar cells. Nanotechnology 2007, 18, 505706.
46. Chen, L. Y.; Yin, Y. T., Hierarchically assembled ZnO nanoparticles on high diffusion coefficient ZnO nanowire arrays for high efficiency dye-sensitized solar cells. Nanoscale 2013, 5, 1777-80.
47. Jiang, W.-T.; Wu, C.-T.; Sung, Y.-H.; Wu, J.-J., Room-Temperature Fast Construction of Outperformed ZnO Nanoarchitectures on Nanowire-Array Templates for Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2013, 5, 911-917.
48. Weerasinghe, H. C.; Huang, F.; Cheng, Y.-B., Fabrication of flexible dye sensitized solar cells on plastic substrates. Nano Energy 2013, 2, 174-189.
49. Miettunen, K.; Halme, J.; Lund, P., Metallic and plastic dye solar cells. Wiley Interdisciplinary Reviews: Energy and Environment 2013, 2, 104-120.
50. Arakawa, H.; Yamaguchi, T.; Sutou, T.; Koishi, Y.; Tobe, N.; Matsumoto, D.; Nagai, T., Efficient dye-sensitized solar cell sub-modules. Curr. Appl. Phys. 2010, 10, S157-S160.
51. Chen, H.-W.; Lin, C.-Y.; Lai, Y.-H.; Chen, J.-G.; Wang, C.-C.; Hu, C.-W.; Hsu, C.-Y.; Vittal, R.; Ho, K.-C., Electrophoretic deposition of ZnO film and its compression for a plastic based flexible dye-sensitized solar cell. J. Power Sources 2011, 196, 4859-4864.
52. Liu, X.; Luo, Y.; Li, H.; Fan, Y.; Yu, Z.; Lin, Y.; Chen, L.; Meng, Q., Room temperature fabrication of porous ZnO photoelectrodes for flexible dye-sensitized solar cells. Chem. Commun. 2007, 2847-9.
53. Kim, J. J.; Kim, K. S.; Jung, G. Y., Fabrication of flexible dye-sensitised solar cells with photoanodes composed of periodically aligned single crystalline vertical ZnO NRs by utilising a direct metal transfer method. J. Mater. Chem. 2011, 21, 7730.
54. Li, H.; Zhao, Q.; Wang, W.; Dong, H.; Xu, D.; Zou, G.; Duan, H.; Yu, D., Novel planar-structure electrochemical devices for highly flexible semitransparent power generation/storage sources. Nano Lett. 2013, 13, 1271-7.
55. Nei de Freitas, J.; Nogueira, A. F.; De Paoli, M.-A., New insights into dye-sensitized solar cells with polymer electrolytes. J. Mater. Chem. 2009, 19, 5279.
56. Nogueira, A. F.; Longo, C.; De Paoli, M. A., Polymers in dye sensitized solar cells: overview and perspectives. Coord. Chem. Rev. 2004, 248, 1455-1468.
57. Singh, P. K.; Nagarale, R. K.; Pandey, S. P.; Rhee, H. W.; Bhattacharya, B., Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes. Advances in Natural Sciences: Nanoscience and Nanotechnology 2011, 2, 023002.
58. Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.; Grätzel, M., A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat. Mater. 2003, 2, 402-7.
59. Chen, C. L.; Teng, H.; Lee, Y. L., In situ gelation of electrolytes for highly efficient gel-state dye-sensitized solar cells. Adv. Mater. 2011, 23, 4199-204.
60. Chen, C.-L.; Teng, H.; Lee, Y.-L., Preparation of highly efficient gel-state dye-sensitized solar cells using polymer gel electrolytes based on poly(acrylonitrile-co-vinyl acetate). J. Mater. Chem. 2011, 21, 628.
61. Bard, A. J.; Faulkner, L. R., Electrochemical methods: fundamentals and applications. Wiley New York: 1980; Vol. 2.
62. Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J., Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochim. Acta 2002, 47, 4213-4225.
63. Bisquert, J., Theory of the impedance of electron diffusion and recombination in a thin layer. J. Phys. Chem. B 2002, 106, 325-333.
64. Fabregat-Santiago, F.; Bisquert, J.; Garcia-Belmonte, G.; Boschloo, G.; Hagfeldt, A., Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol. Energy Mater. Sol. Cells 2005, 87, 117-131.
65. Adachi, M.; Sakamoto, M.; Jiu, J.; Ogata, Y.; Isoda, S., Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J. Phys. Chem. B 2006, 110, 13872-13880.
66. Oekermann, T.; Yoshida, T.; Minoura, H.; Wijayantha, K.; Peter, L., Electron transport and back reaction in electrochemically self-assembled nanoporous ZnO/dye hybrid films. J. Phys. Chem. B 2004, 108, 8364-8370.
67. Sakuragi, Y.; Wang, X.-F.; Miura, H.; Matsui, M.; Yoshida, T., Aggregation of indoline dyes as sensitizers for ZnO solar cells. Journal of Photochemistry and Photobiology A: Chemistry 2010, 216, 1-7.
68. Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; Goldberger, J.; Somorjai, G.; Yang, P., General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett. 2005, 5, 1231-1236.
69. Zheng, Y.-Z.; Tao, X.; Wang, L.-X.; Xu, H.; Hou, Q.; Zhou, W.-L.; Chen, J.-F., Novel ZnO-Based Film with Double Light-Scattering Layers as Photoelectrodes for Enhanced Efficiency in Dye-Sensitized Solar Cells. Chem. Mat. 2010, 22, 928-934.
70. Chen, C. L.; Chang, T. W.; Teng, H.; Wu, C. G.; Chen, C. Y.; Yang, Y. M.; Lee, Y. L., Highly efficient gel-state dye-sensitized solar cells prepared using poly(acrylonitrile-co-vinyl acetate) based polymer electrolytes. Phys. Chem. Chem. Phys. 2013, 15, 3640-5.
71. Park, S. J.; Yoo, K.; Kim, J.-Y.; Kim, J. Y.; Lee, D.-K.; Kim, B.; Kim, H.; Kim, J. H.; Cho, J.; Ko, M. J., Water-Based Thixotropic Polymer Gel Electrolyte for Dye-Sensitized Solar Cells. ACS nano 2013, 7, 4050-4056.