| 研究生: |
韓伯炫 Han, Po-Hsuan |
|---|---|
| 論文名稱: |
機械手臂動態分析、視覺引導、及感測器網路整合於智慧工廠之應用 Dynamic Analysis, Vision Guidance, and Sensor Networking of Robot Manipulators for Smart Factory Applications |
| 指導教授: |
陳國聲
Chen, Kuo-Shen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 159 |
| 中文關鍵詞: | 智慧工廠 、機械手臂 、動態模型 、視覺引導 、感測器應用 、多機整合 、人機互動 |
| 外文關鍵詞: | Smart Factory, Robot Manipulators, Dynamic Model, Vision Guidance, Sensor Application, Multi-machine Integration, Human-robot Interaction |
| 相關次數: | 點閱:192 下載:24 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來在工業4.0的推動下,建立智慧工廠成為業界共同的目標,力求產線自動化、資訊數位化、流程智慧化。德國BOSCH Rexroth所建立的mMS4.0系統涵蓋智慧製造中的各式應用,主要由三個彼此相連的工作站展示組合件的檢測、組裝、倉儲的一條龍產線,儼然是一個縮小版的智慧工廠,然而考量到實際場域中的工作站的離散配置,mMS4.0系統的架構顯得過於理想,因此本研究提出一個以機械手臂應用為核心之智慧工廠架構,並將智慧工廠的應用情境以機械手臂為主體進一步延伸出機械手臂運動模擬、機械手臂整合視覺、感測器應用與機台狀態監控、多機整合與人機互動等四個研究分支。在機械手臂運動模擬中,本文針對利茗機械手臂進行運動學與動力學分析,並建立三維模擬介面與動態模型,接著針對機械手臂與視覺的整合,本研究以間接校正的方式將機器人座標系與視覺座標系疊合,進而形成一個視覺引導系統,在感測器應用與機台狀態監控的分支,本研究除了針對感測器發展延伸應用,亦以既有軟體工具建立監控面板,將內部機台資訊與外部感測器訊號進行整合,針對多機整合與人機互動的部分,本研究透過物聯網工具建立機台間的資料交換機制,並以利茗機械手臂與無人搬運車的搬運情境為例進行實現,同時引入外部感測器使機械手臂取得感知人員靠近的功能,建立智慧工廠中人機互動的安全機制。綜合以上的研究結果,本文將機械手臂作為主要載台,以較低的成本實現智慧工廠的要素,期望本研究的方法與成果在未來可作為中小企業在使用機械手臂升級產線時的參考。
A modified framework of smart factory centering on industrial robot applications is proposed in this work. Under this framework, the scenarios of smart factory are realized by implementing dynamic modelling, vision guidance, sensor networking, status monitoring, multi-machine integration, and human-robot interaction. For dynamic modelling of robot manipulators, a 3D simulation interface and a dynamic model are built based on kinematic and dynamic analysis. For integrating robot manipulator with vision system, an indirect calibration method is conducted to set up a reference frame for both the robot system and the vision system, resulting in a vision guided robot system. For sensor networking and status monitoring, sensor fusion is studied as well as a dashboard is built for integrating internal information from machine controllers with external data from sensors. To achieve multi-machine integration and human-robot interaction, the IoT platforms are utilized for establishing the communication mechanism among different equipment. Furthermore, the industrial robot and automated guided vehicle are integrated to implement an object transportation scenario. In addition, external sensors are integrated so that the industrial robot can sense the approaching of human beings. Hence, the safety mechanism for the human-robot interaction can be established. Eventually, by using industrial robot as a platform, the smart factory scenarios can be realized. It is believed that the methodologies and results developed in this work can be applied to fulfill smart factory in a pragmatic way in the future.
[1] B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, B. Yin, “Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges", IEEE Access, vol. 6, pp. 6505-6519, 2017.
[2] P. Zheng, H. Wang, Z. Sang, R.Y. Zhong, Y. Liu, C. Liu, K. Mubarok, S. Yu, and X. Xu, “Smart Manufacturing Systems for Industry 4.0: a Conceptual Framework, Scenarios and Future Perspectives”, Frontiers of Mechanical Engineering, vol. 13, pp. 137-150, 2018.
[3] 智慧工廠概念圖, https://www.viewsonic.com/library/business/smart-factories/
[4] Training Systems for Automation, BOSCH Rexroth, 2018.
[5] 機械手臂整合視覺(TM robot), https://www.vision-systems.com/factory/robotics/article/16751787/tm-series-of-collaborative-robots-launched-by-omron
[6] 機械手臂配合CNC機床(UR robot), https://www.zacobria.com/universal-robots-zacobria-cnc-feeding-case-story-singapore-chinese.html
[7] 機械手臂整合移動機器人(KUKA KMR iiwa), https://www.kuka.com/en-us/products/mobility/mobile-robot-systems/kmr-iiwa
[8] 人機協作(BOSCH Rexroth APAS robot), https://www.engineering.com/AdvancedManufacturing/ArticleID/12328/This-Week-in-Automation-Robotics-Sensors-Inspection-and-More.aspx
[9] J. J. Craig, Introduction to Robotics: Mechanics and Control 2nd Edition, Addison-Wesley Publishing Company, USA, 1989.
[10] R. P. Paul, Robot Manipulators: Mathematics, Programming and Control, The MIT Press, Cambridge, 1981.
[11] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Dynamics and Control, John Wiley & Sons, New York, 2004.
[12] P. Neto, J. N. Pires and A. P. Moreira, “High-Level Programming and Control for Industrial Robotics: Using a Hand-Held Accelerometer-Based Input Device for Gesture and Posture Recognition,” Industrial Robot: An International Journal, vol. 37, pp. 137–147, 2010.
[13] P. Neto, J. N. Pires, A. P. Moreira, “CAD-based Offline Robot Programming”, Proceedings of the 2010 IEEE Conference on Robotics, Automation and Mechatronics, Singapore, 2010.
[14] F. Cheng, “Robot Manipulation of 3D Cylindrical Objects with a Robot-mounted 2D Vision Camera”, Computing Conference, London, UK, 2017.
[15] C. Thomas, B. Matthias and B. Kuhlenkötter, “Human-Robot Collaboration–New Application in Industrial Robotics”, International Conference on Competitive Manufacturing, Stellenbosch, South Africa, 2016.
[16] G. Anand, E. S. Rahul, R. R. Bhavani, “A Sensor Framework for Human-Robot Collaboration in Industrial Robot Work-Cell”, International Conference on Intelligent Computing, Instrumentation and Control Technologies, Kannur, India, 2017.
[17] N. Nikolakis, V. Maratos, S. Makris, “A Cyber Physical System(CPS) for Safe Human-Robot Collaboration in a Shared Workplace”, Robotics and Computer-Integrated Manufacturing, vol. 56, pp. 233-243, 2019.
[18] 蔡瑞敏, 多波段微機電加速規整合設計於工具主軸振動監控應用, 國立成功大學機械工程學系碩士論文, 2018.
[19] 孫翊淳, 基於類神經網路之狀態監診系統開發及其在工具機刀具狀態診斷之應用, 國立成功大學機械工程學系碩士論文, 2019.
[20] Cartesian robot, https://www.indiamart.com/proddetail/cartesian-robots-4428893773.html
[21] SCARA robot, https://new.abb.com/products/robotics/industrial-robots/irb-910sc
[22] Delta robot, https://www.weiss-gmbh.de/Delta-Robot-DR.4188.0.html?&L=1
[23] Articulated robot, https://www.hiwin.com/articulated-robots.html
[24] 關節型手臂應用手冊, 新代科技股份有限公司, 2018.
[25] 關節型機器人操作手冊, 新代科技股份有限公司, 2018.
[26] S. Kucuk, Z. Bingul, “The Inverse Kinematics Solutions of Industrial Robot Manipulators”, Proceedings of the IEEE International Conference on Mechatronics, Istanbul, Turkey, 2004.
[27] H. Baruh, Analytical Dynamics, McGraw-Hill Book Corporation, New York, 1999.
[28] M. G. Krishnan, S. Ashok, “Kinematic Analysis and Validation of an Industrial Robot Manipulator”, 2019 IEEE Region 10 Conference, Kochi, India, 2019.
[29] H. Høifødt, Dynamic Modeling and Simulation of Robot Manipulators, Master Thesis, Department of Engineering Cybernetics, Norwegian University of Science and Technology, 2011.
[30] K. Kufieta, Force Estimation in Robotic Manipulators: Modeling, Simulation and Experiments, Master Thesis, Department of Engineering Cybernetics, Norwegian University of Science and Technology, 2014.
[31] 光學檢測應用, https://www.qualitymag.com/articles/96060-smart-3d-robot-vision-the-science-of-seamless-system-integration
[32] 機器人整合應用, https://buzzorange.com/techorange/2019/09/05/delta-aoi-system/
[33] I. S. Shin, S. H. Nam, H. G. Yu, R. G. Roberts, and S. B. Moon, “Conveyor Visual Tracking Using Robot Vision”, Florida Conference on Recent Advances in Robotics, Miami, USA, 2006.
[34] R. Y. Tsai, and R. K. Len, “A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration”, IEEE Transactions on Robotics and Automation, vol. 5, pp. 16-29, 1989.
[35] Y. C. Shiu, and S. Ahmad, “Calibration of Wrist-mounted Robotic Sensors by Solving Homogeneous Transform Equations of the Form AX=XB”, IEEE Transactions on Robotics and Automation, vol. 5, pp. 345-358, 1989.
[36] A. J. C. Trappey, C. V. Trappey, U. H. Govindarajan, A. C. Chuang, J. J. Sun, “A Review of Essential Standards and Patent Landscapes for the Internet of Things: a Key Enabler for Industry 4.0”, Advanced Engineering Informatics, vol. 33, pp. 208–229, 2017.
[37] J. Wan, S. Tang, Z. Shu, D, Li, S. Wang, M. Imran, and A. V. Vasilakos, ‘‘Software-Defined Industrial Internet of Things in the Context of Industry 4.0’’, IEEE Sensors Journal, vol. 16, pp. 7373-7380, 2016.
[38] IBM Node-RED Platform, https://nodered.org/
[39] N. Nikolov, “Research of the Communication Protocols between the IoT Embedded System and the Cloud Structure”, IEEE XXVII International Scientific Conference Electronics - ET, Sozopol, Bulgaria, 2018.
[40] 國際標準化組織ISO提出之OSI模型, https://www.iso.org/ics/35.100/x/
[41] 機械手臂與機器視覺整合之取放示意圖, https://www.leoni-factory-automation.com/en/products-and-services/turnkey-custom-solutions/
[42] 達明機器人TM5-700, https://www.tm-robot.com/zh-hant/regular-payload/
[43] 工業網路市占率調查, https://www.hms-networks.com/news-and-insights/news-from-hms/2019/05/07/industrial-network-market-shares-2019-according-to-hms
[44] 工業機器人與無人搬運車的配合示意圖, https://www.prefactortech.com/index.html?fbclid=IwAR3wHRZiyCp_YFks1AZwznvmnzVBLVhRzGs3-7Ip16h-fY172ZUXl7415PE