| 研究生: |
邱立瑜 Chiu, Li-Yu |
|---|---|
| 論文名稱: |
旋轉夾心功能性圓錐截柱殼受制於不同邊界條件下之三維自然振動分析 A Three-dimensional Free Vibration Analysis of Rotating Sandwich Functionally Graded Truncated Conical Shells under Various Boundary Conditions |
| 指導教授: |
吳致平
Wu, Chih-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 有限環形柱體元素法 、功能性材料 、Reissner混合變分原理 、旋轉殼 、振動 |
| 外文關鍵詞: | Finite annular prism methods, functionally graded materials, Reissner’s mixed variational theorem, rotating shells, vibration |
| 相關次數: | 點閱:127 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文基於Reissner混合變分原理(Reissner's mixed variational theorem,RMVT),發展有限環形柱體元素法,據以解析旋轉夾心功能性(functionally graded,FG)圓錐截柱殼,受制於不同變化邊界條件下之自然振動分析。假設FG圓錐截柱殼的材料成份體積分量沿厚度方向呈冪次函數分佈,其有效材料性質則利用兩相材料混合定律推估。文中考慮由於旋轉所引起的初始環向應力、離心加速度和Coriolis加速度對該圓錐截柱殼自然振頻的影響。分析結果顯示本有限環形柱體元素法解收斂迅速,且其收斂解與文獻中的精確解高度契合。本文所獲得旋轉和不旋轉的夾心FG圓錐截柱殼之自然頻率參數解可視為標準驗證解,用以評估各種二維古典,進階和改良殼理論解之精確度。
In this work, the authors develop a Reissner's mixed variational theorem (RMVT)-based weak formulation for the three-dimensional (3D) free vibration analysis of sandwich functionally graded (FG) truncated conical shells under various boundary conditions rotating with a constant angular velocity with respect to the central axis of the shells. The material properties of the FG layers constituting the truncated conical shell are assumed to obey a power-law distribution of the volume fractions of the constituents through their thickness direction, for which the effective material properties are estimated using the rule of mixtures. Based on the weak formulation, a semi-analytical finite annular prism (FAP) method is developed for the current issue, where the effects of the initial hoop stress due to rotation and the centrifugal and Coriolis accelerations are considered. Implementation of the current FAP method indicates that its solutions converge rapidly, and the convergent solutions closely agree with accurate solutions available in the literature. The obtained 3D frequency parameter solutions for rotating and non-rotating sandwich FG truncated conical shells can provide a standard by which to assess those obtained using assorted two-dimensional classical, advanced, and refined shell theories.
Amirabadi, H., F. Farhatnia, S. A. Eftekhari, R. Hosseini-Ara. 2020. Free vibration analysis of rotating functionally graded GPL-reinforced truncated thick conical shells under different boundary conditions. Mechanics based design of structures and Machines. doi: 10.1080/15397734.2020.1822183.
Babaei, M., and K. Asemi. 2020. Stress analysis of functionally graded saturated porous rotating thick truncated cone. Mechanics Based Design of Structures and Machines in press. doi: 10.1080/15397734.2020.1753536.
Chan, D. Q., V. D. Long, and N. D. Duc. 2019. Nonlinear buckling and postbuckling of FGM shear-deformable truncated conical shells reinforced by FGM stiffeners. Mechanics of Composite Materials 54 (6):745-64. doi: 10.1007/s11029-019-9780-x.
Civalek, 2006. An efficient method for free vibration analysis of rotating truncated conical shells. International Journal of Pressure Vessels and Piping 83 (1):1-12.
doi: 10.1016/j.ijpvp.2005.10.005.
Civalek, 2017. Discrete singular convolution method for the free vibration analysis of rotating shells with different material properties. Composite Structures 160:267-79. doi: 10.1016/j.compstruct.2016.10.031.
Civalek, and M. Gürses. 2009. Free vibration analysis of rotating cylindrical shells using discrete singular convolution technique. International Journal of Pressure Vessels and Piping 86 (10):677-83. doi: 10.1016/j.ijpvp.2009.03.011.
Dai, Q., Q. Cao, and Y. Chen. 2018. Frequency analysis of rotating truncated conical shells using the Haar wavelet method. Applied Mathematical Modelling 57:603-13. doi: 10.1016/j.apm.2017.06.025.
Daneshjou, K., M. Talebitooti, and R. Talebitooti. 2013. Free vibration and critical speed of moderately thick rotating laminated composite conical shell using generalized differential quadrature method. Applied Mathematics and Mechanics 34 (4):437-56. doi: 10.1007/s10483-013-1682-8.
Duc, N. D., S. E. Kim, D. Q. Chan. 2018. Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT. Journal of Thermal Stresses 41 (3):331-65.
doi: 10.1080/01495739.2017.1398623.
Golchi, M., M. Talebitooti, and R. Talebitooti. 2019. Thermal buckling and free vibration of FG truncated conical shells with stringer and ring stiffeners using differential quadrature method. Mechanics based design of structures and Machines 47 (3):255-82.
Han, Q., and F. Chu. 2013. Effect of rotation on frequency characteristics of a truncated circular conical shell. Archive of Applied Mechanics 83:1789-800.
doi: 10.1007/s00419-013-0778-x.
Huang, S. C., and W. Soedel. 1988. Effects of Coriolis acceleration on the forced vibration of rotating cylindrical shells. Journal of Applied Mechanics 55 (1):231-3. doi: 10.1115/1.3173637.
Irie T., G. Yamada, and Y. Kaneko. 1984. Natural frequencies of truncated conical shells. Journal of Sound and Vibration 92 (3):447-53.
doi: 10.1016/0022-460X(84)90391-2.
Jones, R. M. 1975. Mechanics of Composite Materials. New York: McGraw-Hill.
Lam, K. Y., and H. Li. 1999a. Influence of boundary conditions on the frequency characteristics of a rotating truncated circular conical shell. Journal of Sound and Vibration 223 (2):171-95. doi: 10.1006/jsvi.1998.1432.
Lam K. Y., and H. Li. 1999b. On free vibration of a rotating truncated circular orthotropic conical shell. Composites Part B 30 (2):135-44.
doi: 10.1016/S1359-8368(98)00049-3.
Lam, K. Y., and H. Lin. 2000. Generalized differential quadrature for frequency of rotating multilayered conical shell. Joumal of Engineering Mechanics 126 (11):1156-62. doi: 10.1061/(ASCE)0733-9399 (2000)126:11(1156).
Leissa, A.W. 1973. Vibration of Shells. NASA Report No. SP-288.
Leissa, A.W. 1995. Buckling and postbuckling theory for laminated composite plate, in: Turvey, G. J., and I. H., Marshall (Eds). Buckling and Postbuckling of Composite Plates. Dordrecht: Springer.
Li H. 2000. Influence of boundary conditions on the free vibrations of rotating truncated circular multi-layered conical shells. Composites Part B 31 (4):265-75. doi: 10.1016/S1359-8368(00)00012-3.
Liew, K. M., T. Y. Ng, and X. Zhao. 2002. Vibration of axially loaded rotating cross-ply laminated cylindrical shells via Ritz method. Journal of Engineering Mechanics 128 (9):1001-7. doi: 10.1061/(ASCE)0733-9399(2002)128:9(1001).
Malekzadeh, P., and Y. Heydarpour. 2013. Free vibration analysis of rotating functionally graded truncated conical shells. Composite Structures 97:176-88. doi: 10.1016/j.compstruct.2012.09.047.
Ng, T. Y., H. Li, and K. Y. Lam. 2003. Generalized differential quadrature for free vibration of rotating composite laminated conical shell with various boundary conditions. International Journal of Mechanical Sciences 45 (3):567-87. doi: 10.1016/S0020-7403(03)00042-0.
Nguyen, P. D., V. D. Quang, V. T. T. Anh, and N. D. Duc. 2019. Nonlinear vibration of carbon nanotube reinforced composite truncated conical shells in thermal environment. International Journal of Structural Stability and Dynamics 1950158 (26 pages). doi: 10.1142/S021945541950158X.
Praveen, G. N., and J. N. Reddy. 1998. Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. International Journal of Solids and Structures 35 (33):4457-76. doi: 10.1016/S0020-7683(97)00253-9.
Reddy, J. N. 1984. Energy and Variational Methods in Applied Mechanics. New York: Wiley.
Reddy, J. N. 2003. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. Boca Raton: CRC Press.
Saada, A. S.1974. Elasticity: Theory and Applications. New York: Pergamon Press.
Saadatfar, M., and M. H. Zarandi. 2020. Effect of angular acceleration on the mechanical behavior of an exponentially graded piezoelectric rotating annular plate with variable thickness. Mechanics Based Design of Structures and Machines in press. doi: 10.1080/15397734.2020.1751198.
Sadd, M. H. 2005. Elasticity: Theory, Applications, and Numerics. New York: Elsevier.
Safarpour, M., A. R. Rahimi, and A. Alibeigloo. 2020. Static and free vibration analysis of graphene platelets reinforced composite truncated conical shells, cylindrical shell, and annular plates using theory of elasticity and DQM. Mechanics based design of structures and Machines 48 (4):496-524.
doi: 10.1080/15397734.2019.1646137.
Sivadas, K. R. 1995. Vibration analysis of pre-stressed rotating thick circular conical shell. Journal of Sound and Vibration 186 (1):99-109. doi: 10.1006/jsvi.1995.0436.
Sodel, W. 1993. Vibrations of Shells and Plates. New York: Marcel Dekker Inc.
Sofiyev, A. H., D. Hui, A. A. Valiyev, F. Kadioglu, S. Turkaslan, G. Q. Yuan, and V.
Kalpakci. 2016. Effects of shear stresses and rotary inertia on the stability and vibration of sandwich cylindrical shells with FGM core surrounded by elastic medium. Mechanics based design of structures and Machines 44 (4):384-404. doi: 10.1080/15397734.2015.1083870.
Taati, E., V. Borjalilou, F. Fallab, and M. T. Ahmadian. 2020. On size-dependent nonlinear free vibration of carbon nanotube-reinforced beams based on the nonlocal elasticity theory: Perturbation technique.
doi: 10.1080/15397734.2020.1772087.
Talebitooti, M. 2013. Three-dimensional free vibration analysis of rotating laminated conical shells: layerwise differential quadrature (LW-DQ) method. Archive of Applied Mechanics 83:765-81. doi: 10.1007/s00419-012-0716-3.
Tong L. 1993. Free vibration of composite laminated conical shells. International Journal of Mechanical Sciences 35 (1):47-61. doi: 10.1016/0020-7403(93)90064-2.
Tornabene, F., E. Viola, and D.J. Inman. 2009. 2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures. Journal of Sound and Vibration 328 (3):259-90.
doi: 10.1016/j.jsv.2009.07.031
Tornabene, F. 2009. Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Computer Methods in Applied Mechanics and Engineering 198 (37-40): 2911-35. doi: 10.1016/j.cma.2009.04.011.
Wu, C. P., H. Y. Huang. 2020. A semi-analytical finite element method for stress and deformation analyses of bi-directional functionally graded truncated conical shells. Mechanics Based Design of Structures and Machines 48 (4):433-58.
doi: 10.1080/15397734.2019.1636657.
Wu, C. P., and H. Y. Li. 2012. Exact solutions of free vibration of rotating multilayered FGM cylinders. Smart Structures and Systems 9 (2):105-25.
doi: 10.12989/sss.2012.9.2.105
Wu C. P., and Y. C. Liu. 2016. A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells. Composite Structures 147:1-15.
doi: 10.1016/j.compstruct.2016.03.031.
Zhang, J. H., and S. R. Li. 2013. Free vibration of functionally graded truncated conical shells using the GDQ method. Mechanics of Advanced Materials and Structures 2013 20 (1):61-73. doi: 10.1080/15376494. 2011.581415.