簡易檢索 / 詳目顯示

研究生: 許銘軒
Hsu, Ming-Hsuan
論文名稱: 應用小波轉換及類神經網路於滾珠軸承之故障診斷
Fault Diagnostics of Ball Bearings Using Wavelet Transform and Neural Networks
指導教授: 鄭芳田
Cheng, Fan-Tien
共同指導教授: 楊浩青
Yang, Hao-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 52
中文關鍵詞: 特徵維度縮減小波轉換損壞診斷
外文關鍵詞: Feature Dimension Reduction, Wavelet Transform, Fault Diagnostics
相關次數: 點閱:124下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為診斷加工機台異常,透過如振動或噪音等來源的感測資料,可藉由訊號處理如時域、頻域、或小波轉換等萃取特徵,方能進行其診斷分析。其中,有效特徵為診斷效能的關鍵;然由於異常模式的物理特性差異,特徵的萃取與選擇實仍為診斷分析的挑戰。
    本研究提出一啟發式特徵維度縮減程序,以於不同感測來源與異常特性下,在最大化診斷正確率下,以較少的實驗次數,獲得最小化之特徵集合。因此,當進行特徵選擇時,若不同特徵之原特徵如時間區間、頻帶、或來源等相似度高時,則保留具較佳診斷效益之特徵。此程序尤適用於小波訊號頻帶的最佳化選擇,以獲得與各錯誤分類方法的最適特徵組合。
    以機台軸承損壞模式診斷為例,其軸承破壞模式如內環、外環、與滾子等單一與複合損壞模式等之振動資料。本程序可於6次實驗內,有效縮減28個特徵為9個。經特徵所建構之複合損壞模式診斷分析結果,比較縮減前後,倒傳遞類神經網路分類正確率可由90.78%提升至92.23%;此外,機率類神經分類正確率可由86.67%提升至87.21%。

    Signals detected from accelerate and acoustic sensors should be processed to extract features by using such as time-domain, frequency-domain, and wavelet transform to diagnose machine faults. Effective features decide diagnostic performance. However, causing physics of fault modes, feature extraction and selection is a diagnostic analysis challenge.
    This work proposed a heuristic dimension reduction procedure to derive limited feature dimensions with maximum diagnostic accuracy in fewer experiments. In this procedure, higher diagnostic effect is selected from features which possess similar meta-attributes, e.g., time duration, frequency bandwidth, and source. Moreover, selection of original signal and the agreeing wavelet band is supported to reduce analyzing time for deriving the agreeing feature sets of the following classification methods.
    A machining bearing diagnostics case which included single and mixture fault modes of inner race, outer race, and roller is presented. It shows twenty-eight major features extracted from vibration data can be reduced to nine features in six experiments by using the proposed procedure. After training diagnostic models by using features, comparison of two conditions mixture failure modes classification accuracy of back-propagation neural network is improved from 90.78% to 92.23%; meanwhile, probabilistic neural network is improved from 86.67% to 87.21%.

    中文摘要 英文摘要 致謝 目錄 i 圖目錄 iii 表目錄 iv 第一章 緒論 1 1.1 研究背景與文獻探討 1 1.2 研究目及問題描述 4 1.3 預期結果 4 第二章 理論方法 5 2.1 理論基礎 5 2.1.1 奈奎氏採樣定理 5 2.1.2 傅立葉轉換 5 2.1.3 短時傅立葉轉換 6 2.1.4 小波轉換 7 2.1.5 倒傳遞類神經網路 11 2.1.6 機率類神經網路 12 2.2 診斷程序之發展 13 2.2.1 資料擷取 13 2.2.2 資料前處理 14 2.2.3 特徵萃取 15 2.2.4 損壞診斷 17 2.2.5 績效驗證 21 2.2.6 特徵維度縮減 22 第三章 案例分析 23 3.1 實驗架構 23 3.2 實驗設計 25 3.2.1 軸承損壞模擬 25 3.2.2 特徵頻率計算 26 3.2.3 資料收集規劃 28 3.3 實驗結果 28 3.3.1 特徵頻率萃取實驗 29 3.3.2 軸承損壞診斷實驗 38 第四章 結論與未來方向 46 4.1 結果討論與建議 46 4.1.1 感測器位置比較 46 4.1.2 方法比較 46 4.1.3 寬放範圍之訂定 46 4.1.4 特徵維度縮減 49 4.1.5 增加新特徵 50 4.2 未來研究 51

    [1]M-C García, M-A Sanz-Bobi, and del J. Pico, “SIMAP: Intelligent System for Predictive Maintenance. Application to the health condition monitoring of a wind-turbine gearbox, “ Comput Ind., vol. 56, no. 6, pp. 552-568, 2006.
    [2]鄭芳田、顏家鈺、蔡明祺、楊燿州、施文彬、陳裕民、楊大和、周立芃 (2008),Intelligent Manufacturing Systems,自動化科技學會會刊,6期,頁16-17.
    [3]R.B.W. Heng and M.J.M. Nor, “Statistical Analysis of Sound and Vibration Signals for Monitoring Rolling Element Bearing Condititi- on,” Applied Acoustics, Vol. 53, No.1-3, pp.211-226, 1998.
    [4]Jie Liu,WilsonWang, Farid Golnaraghi and Kefu Liu, “Wavelet spectrum analysis for bearing fault diagnostics,” Measurement Science and Technology, VOL. 19, 2008.
    [5]S Wadhwani, S P Gupta, and V Kumar, “Wavelet Based Vibration Monitoring for Detection of Faults in Ball Bearings of Rotating Machines,” Journal Inst. Eng. (India) –EL,vol.86, no. 4, pp. 77-81, Sep. 2005.
    [6]Bo Li, Mo-Yuen Chow, Yodyium Tipsuwan, and James C. Hung, “Neural-Network-Based Motor Rolling Bearing Fault Diagnosis,” IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 47, NO. 5, pp. 1060-1069, OCTOBER 2000.
    [7]S. Tyagi," A Comparative Study of SVM Classifiers and Artificial Neural Networks Application for Rolling Element Bearing Fault Diagnosis using Wavelet Transformation Preprocessing," in Processing of World Academy of Science, Engineering and Technology, vol. 33, pp. 319-327, 2008.
    [8]Howard C. Choe, Bryan, Yulun Wan and Andrew K. Chan, “Neural pattern identification of railroad wheel-bearing fault from audible acoustic signals: Comparison of FFT, CFT, and DWT features,” Proceedings of the SPIE, (3078):480-496, 1997.
    [9]B. Samanta, Khamis R. Al-Balushi, and Saeed A. Al-Araimi, “Bearing Fault Detection Using Artificial Neural Networks and Genetic Algorithm,” EURASIP Journal on Applied Signal Processing, VOL. 3, pp. 366–377, 2004.
    [10]B. Samanta, Khamis R. Al-Balushi, and Saeed A. Al-Araimi, “Bearing Fault Detection Using Artificial Neural Networks and Genetic Algorithm,” EURASIP Journal on Applied Signal Processing, VOL. 3, pp. 366–377, 2004.
    [11]Arnaz Malhi and Robert X. Gao, “PCA-Based Feature Selection Scheme for Machine Defect Classification,” IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 53, NO. 6, pp. 366–377, DECEMBER 2004.
    [12]楊建國「小波分析及其工程應用」,機械工業出版社,2005.
    [13]F.-T. Cheng, Y.-T. Chen, Y.-C. Su, and D.-L. Zeng, "Evaluating reliance level of a virtual metrology system," IEEE Transactions on Semiconductor Manufacturing, vol. 21, no. 1, pp. 92-103, Feb. 2008.

    無法下載圖示 校內:2012-09-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE