簡易檢索 / 詳目顯示

研究生: 吳政璋
Wu, Jheng-Jhang
論文名稱: 筐網結構物對河岸沖刷保護之現地實驗
Field experimental study on river-bank protection by porous structure
指導教授: 黃進坤
HUANG, Jin-Kun
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系碩士在職專班
Department of Hydraulic & Ocean Engineering (on the job class)
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 103
中文關鍵詞: 筐網群結構物沖刷河床沖淤導流
外文關鍵詞: Porous Cylinder, Scour, Deposit, Conduction current
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要以現地實驗,利用「成功筐網(CKPB)」導流工法來探討筐網群對於河岸保護的效果。現地實驗以復合型筐網組合成四類。第一種組合以單排筐網設置來測試成效。第二種組合以雙排筐網並平行設置。第三種組合為兩排筐網以第二排位置設置在第一排中間位置,延伸第一排導流效果。第四種組合為增長前三組筐網的導流效果。藉由現地實驗觀測筐網群產生淤積效應及穩定性。
    根據試驗結果得知,當水位高程超過筐網1.2m以上時,筐網對表面流速的影響不明顯。筐網群完全被泥沙覆蓋後,其將不再發揮導流效果。雨季觀測期間之筐網群,複合型筐網結構物仍未受洪水攻擊而斷裂破壞,因此得知此次筐網群設置方式及複合型筐網結構物,發揮導流效應及複合型結構可承受洪水攻擊。
    由試驗區量測各斷面沖淤變化得知,受到筐網阻水的效應,原深槽區域均有回淤效果,回淤高程由最上游之1.5m逐漸往下游減小為0.2m,顯示著底床坡度變緩而流速降低,流速橫向分布觀察可知,流路之主深槽將由原本靠近護岸邊界流動,主流有偏向河心之趨勢,可以達到減少河岸沖刷,以保護堤岸安全。

    This paper mainly by the location experiment which be applied by “ Cheng-Kung Porous Basket(CKPB)” . We discusses this porous basket group regarding the river protection effect by this conduction current method. The location experiment synthesizes four kinds by the multi-porous basket system .(1)The first kind of the result is applied by the single porous basket establishment.(2) The second is set up by two-row porous basket and parallel .(3)The third one is two row of porous basket ,then establishes by the second row of position which be set into the first row of middle position, then extend the first row of conduction current effect. (4) The fourth kind is enhance the effect by the above method (1~3).We can gain the siltation effect and the stability because of the location experimental observation porous basket group.
    According to the experiment result, when the water level elevation surpasses above porous basket 1.2m, the porous basket is not obvious to the speed of flow influence. After the porous basket group totally be covered by the silt , it is no longer to display the conduction current effect. The porous basket group be observed under rainy , the multi porous basket group which structure have still not be broken by flood attack , therefore we know those establishment method of porous basket group and the multi- porous cylinder which can withstand the flood attack.
    We can gain the various result by the experiment area to flush silt , according to the porous basket group anti- water obstruct effect, the deep trench have the river deposit effect, the river deposit elevation by the most upstream 1.5m ,then gradually reduces toward the downstream to be 0.2m. It is demonstrating the gradient of the riverbed is getting smoothly and also slow down the speed of flow. According to the speed of deep porous basket flow observation that we can know the porous basket flood is approach close to the riverbed. The flood of mainstream is tendency to the center of river. This result not only can reduce the scour influence, but also can protect the dike security.

    摘要 I ABSTRACT II 誌謝 IV 目錄 IV 表目錄 VI 圖目錄 VII 照片目錄 IX 符號說明 X 第一章 前言 1 1-1 研究動機 1 1-2 前人研究 3 1-3 本文架構 7 第二章 成功筐網之特性 8 2-1 成功筐網週圍流場介紹 9 2-2 延遲流體分離現象 12 第三章 現地實驗條件 14 3-1 現地介紹 14 3-2 研究地點之水理條件 17 3-2-1 荖濃溪流域水文慨況 17 3-2-2 實驗區域流量慨況 19 3-3 實驗設備 22 3-3-1 試驗儀器及設備 22 3-3-2 筐網設置型式 25 3-4 量測方法 30 3-5 試驗區各斷面觀測時間 31 第四章 結果分析與討論 33 4-1 試驗區域梅雨季與莫拉克颱風洪水之水位變化介紹 33 4-2 試驗區域沖於之探討 38 4-3 試驗區筐網流場變化探討 54 4-4 綜合討論 70 第五章 結論與建議 72 5-1 結論 72 5-2 建議 74 參考文獻 75 附錄表A 筐網群斷面量測數據紀錄 80 附錄表B 流速量測數據紀錄 95 附錄表C 流速測量時間之水位計L1水位 103 表目錄 表1-1 河川輸砂特性關係表(Schumm, 1963) 1 表3-1 水利署近年來水位資料整彙 19 表3-2 97年高屏溪治理規劃檢討里嶺大橋每年最大時流量 20 表3-3 斷面測量資料彙整 20 表3-4 里港大橋上游200m近年地形高程變動圖 21 表3-5 試驗區各斷面底床高程量測時間表 31 表3-6 試驗區各斷面流速量測時間表 32 表4-1 壓力式自記水位計L1水面高程與流量之關係 34 圖目錄 圖2-1 筐網結構物周圍流況示意圖 9 圖2-2 圓柱流場特徵示意圖 11 圖2-3 為圓柱不同透水程度流體分離現象所對應之雷諾數門檻 12 圖3-1 荖濃溪流域概況圖 18 圖3-2 實驗區筐網群排列平面圖 25 圖3-3 實驗區筐網群排列平面圖 26 圖3-4 複合型筐網設置方式 27 圖3-5 複合型筐網設置方式 28 圖3-6 複合型筐網結構物 29 圖4-1 壓力式自記水位計水位全程變化 32 圖4-2 莫拉克颱風水位全程變化 33 圖4-3 上下游水位的全程變化 33 圖4-4 壓力式自記水位計L1水面高程與流量關係圖 34 圖4-5 斷面測量位置示意圖 35 圖4-6 A25斷面至BC斷面地形變化比較圖 42 圖4-6 Ce斷面至Fi斷面地形變化比較圖 43 圖4-6 Fe斷面至F50斷面地形變化比較圖 44 圖4-7 A25斷面至Ae斷面局部地形變化比較圖 45 圖4-7 AB斷面至BC斷面局部地形變化比較圖 46 圖4-7 Ce斷面至Di斷面局部地形變化比較圖 47 圖4-7 DE斷面至Fi斷面局部地形變化比較圖 48 圖4-7 Fe斷面至F50斷面局部地形變化比較圖 49 圖4-8 7月7日表面流速量測 (竹筏測量) 56 圖4-9 8月4日表面流速量測 (人工量測) 57 圖4-10 6月5日浮標法表面流速量測 58 圖4-11 6月19日浮標法表面流速量測 59 圖4-12 6月22日浮標法表面流速量測 60 圖4-13 6月24日浮標法表面流速量測 61 圖4-14 8月7日浮標法表面流速量測 62 圖4-15 8月9日浮標法表面流速量測 63 圖4-16 8月10日浮標法表面流速量測 64 圖4-17 8月12日浮標法表面流速量測 65 照片目錄 照片2-1 成功筐網(CKPB)……………….………………………………...8 照片3-1 實驗區域空拍地型……………………….…………………......15 照片3-2 筐網群設置完成……………………………………...…….…...16 照片3-3 洪水破壞後之地形………………………………..……….…....16 照片3-4 壓力式自記水位計儀 23 照片3-5 一維螺旋式流速儀 23 照片3-6 複合型筐網構造物 24 照片3-7 全測站光波測距經緯儀 24 照片4-1 上游端壓力式自記水位計及標記水尺位置 30 照片4-2 下游端壓力式自記水位計位置 31 照片4-3 下游端水位計標記水尺位置 31 照片4-4 試驗區梅雨季後筐網群空照圖 40 照片4-5 試驗區梅雨季後筐網群空照圖 41 照片4-6 機具進行施工及基樁植入 41

    1. 吳健民 (1991),「泥沙運移學」,中國土木水利工程學會。
    2. 吳虹邑 (2005),「筐網結構物對橋墩沖刷保護之研究」,國立成功大學水利及海洋工程研究所碩士論文。
    3. 易任、王如意 (1979),「應用水文學」,國立編譯館。
    4. 林達志 (2003),「潛沒式跌水坑對橋墩沖刷影響暨保護工法之初步研究」,國立成功大學水利及海洋工程研究所碩士論文。
    5. 施國欽 (2005),「大地工程學(一)土壤力學篇」。
    6. 洪澤仁 (2006),「水舌導流工對自由跌水沖刷保護之研究」,國立成功大學水利及海工程研究所碩士論文。
    7. 莊智盛 (2004),「成功人工水草對自由跌水下游橋墩沖刷保護之研究」,國立成功大學水利及海洋工程研究所碩士論文。
    8. 張忠潔 (2002),「跌水沖刷與橋墩沖刷互動關係試驗之研究」,國立成功大學水利及海洋工程研究所碩士論文。
    9. 陳志弘 (2003),「圓形渠道之單柱與雙柱之沖刷試驗」,國立成功大學水利及海洋工程研究所碩士論文。
    10. 許時雄 (2003),「治河防洪 (與) 海岸防護」,科技圖書。
    11. 陳右典 (2005),「成功人工水草對彎道橋墩沖刷保護之研究」,國立成功大學水利及海洋工程研究所碩士論文。

    12. 黃偉哲 (2001),「水流通過透水式橋墩保護工之流況分析」,國立成功大學水利及海洋工程研究所碩士論文。
    13. 黃進坤 (2005),「沖積河川上課講義」,成功大學水利所。
    14. 黃進坤 (2006),「橋墩保護新工法之研究」,台灣公路工程,第32卷第8期,pp.39-44。
    15. 傅家揚 (2006),「筐網結構物在不同水流攻角對橋墩沖刷保護之影響」,國立成功大學水利及海工程研究所碩士論文。
    16. 詹錢登 (2005),「泥沙運行學上課講義」,國立成功大學水利及海洋工程學系。
    17. 蔡文鎗 (1989),「圓柱形橋墩之沖刷研究」,國立成功大學水利及海洋工程研究所碩士論文。
    18. 蔡長泰 (2006),「河道水力學上課講義」,成功大學水利所。
    19. 蕭慶章 (2004),「實用河川工程(上) 河川工程規劃」,科技圖書。
    20. 蕭慶章 (2004),「實用河川工程(下) 河川工程治理」,科技圖書。
    21. 黃進坤 (2010),「高屏溪本流沖刷機制及防護新工法之研究」,經濟部水利署第七河川局。
    22. Ataie-Ashtiani, B. and Beheshti, A.A. (2006), “Experimental Investigation of Clear-water Local Scour at Pile Groups”, Journal of Hydraulic Engineering, ASCE, Vol.132, No.10, pp.1100-1104.
    23. Baker, C.J. (1980), “Theoretical Approach to Prediction of Local Scour Around Bridge Piers”, Journal of Hydraulic Research, Vol.18, No.1, pp.1-12.
    24. Breusers, H.N.C. and Raudkivi, A.J. (1991), “Scouring”, Hydraulic Structures Design Manual, pp.51-99.
    25. Chiew, Y.M. and Melville, B.W. (1987), “Local Scour Around Bridge Piers”, Journal of Hydraulic Research, Vol.25, No.1, pp.15-26.
    26. Chiew, Y.M. (1992), “Scour Protection at piers”, Journal of Hydraulic Engineering, ASCE, Vol.118, No.9, pp.1260-1269.
    27. Chiew, Y.M. (2004), “Local Scour and Riprap Stability at Bridge Piers in a Degrading Channel”, Journal of Hydraulic Engineering, ASCE, Vol. 130, No.3, pp.218-226.
    28. Ettema, R., Kirkil, G., and Muste, M. (2006), “Similitude of Large-Scale Turbulence in Experiments on Local Scour at Cylinders”, Journal of Hydraulic Engineering, ASCE, Vol.132, No.1, pp.33-40.
    29. Huang, C-K, Tang, C-J, and Kuo, T-Y (2005), “Use Of Surface Guide Panels As Pier Scour Countermeasures”, International Journal of Sediment Research, Vol.20, No.2, pp.119-130.
    30. Laursen, E.M. (1960), “Scour at Bridge Crossings”, Journal of the Hydraulic Division, ASCE, Vol.86, No.Hy2, February, pp.39-54.
    31. Lauchlan, C.S. and Melville, B.W. (2001), “Riprap Protection at Bridge Piers”, Journal of Hydraulic Engineering, ASCE, Vol.127, No.5,May, pp.412-418.
    32. Melville, B.W. and Randkivi, A.J. (1977), “Flow Characteristics in Local Scour at Bridge Piers”, Journal of Hydraulic Research, Vol.15, No.4, pp.373-380.
    33. Melville, B.M. and Sutherland, A.J. (1988), “Design Method for Local Scour at Bridge Pier”, Journal of Hydraulic Engineering, ASCE, Vol.114, No.10, pp.1210-1226.
    34. Melville, B.W., and Hadfield, A.C. (1999), “Use of Sacrifical Piles as Pier Scour Countermeasures”, Journal of Hydraulic Engineering, ASCE, Vol 125, No.11, pp.1221-1224.
    35. Melville, B.W., and Chiew, Y.M. (1999), “Time Scale for Local Scour at Bridge Piers”, Journal of Hydraulic Engineering, ASCE, Vol 125, No.1, pp.59-65.
    36. Melville, B.W., and Coleman, S.E. (2000), “Bridge Scour”, Water Resourcrs Publications, LLC.
    37. Oliveto, G., and Hager, W.H. (2005), “Further Results to Time-Dependent Local Scour at Bridge Elements”, Journal of Hydraulic Engineering, ASCE, Vol.131, No.2, pp.97-105.
    38. Randkivi, A.j. , and Ettema, R. (1977), “Effect of Sediment Gradation on Clear Water Scour”, Journal of the Hydraulic Division, ASCE, Vol.103, No.10, pp.97-105.
    39. Randkivi, A.j. and Ettema, R. (1983), “Clear-Water Scour at Cylindrical Piers”, Journal of Hydraulic Engineering, ASCE, Vol.109, No.3, pp. 338-349.
    40. Sheppard, D.M., Odeh, M., and Glasser, T. (2004), “Large Scale Clear-Water Local Pier Scour Experiments”, Journal of Hydraulic Engineering, ASCE, Vol.130, No.10, pp.957-963.
    41. Sheppard, D.M., and Miller, W. (2006), “Live-Bed Local Pier Scour Experiment”, Journal of Hydraulic Engineering, ASCE, Vol.132, No.7, pp.635-642.
    42. Yoon, T.H. (2005), “Wire Gabion for Protecting Bridge Piers”, Journal of Hydraulic Engineering, ASCE, Vol.131, No.11, pp.942-949.
    43. Zarrati, A.R., Nazariha, M., and Mashahir, M.B. (2006), “Reduction of Local Scour in the Vicinity of Bridge Pier Groups Using Collars and Riprap”, Journal of Hydraulic Engineering, ASCE, Vol.132, No.2, pp.154-162.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE