| 研究生: |
許家維 Hsu, Chia-Wei |
|---|---|
| 論文名稱: |
具新穎閘極及通道結構的高性能多晶矽與高介電/金屬堆疊式閘極奈米金氧半電晶體之研究 Studies of High Performance Poly and High-k Metal Gate Nano Scaled MOSFET with Novel Gate and Channel Structures |
| 指導教授: |
方炎坤
Fang, Yean-Kuen 葉文冠 Yeh, Wen-Kuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 應力結構 、矽鍺通道 、高介電材料 |
| 外文關鍵詞: | strain technology, SiGe channel, high-k material |
| 相關次數: | 點閱:112 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當金氧半場效電晶體製程技術微縮到深次微米時代時,電晶體元件之電流增益已無法只靠單純的縮小閘極長度。製程技術上的種種限制,如曝光波長的影響、可靠度的考量、抑或是過薄的閘極氧化層導致嚴重的閘極漏電流,增加尺吋向下微縮的困難。
全矽化結構(Fully Silicide)與及應力結構(Strain Technology)為目前在電晶體製程技術上,勢必應用的一種先進製程技術。原因在於其製程技術與現有製程機台相容,且對於元件的效能有一定程度上之提昇。本論文的第二章中,我們利用了閘極上方的接觸蝕刻停止層(Contact Etch Stop Layer, CESL) 及兩種不同的新穎閘極製程技術(Ultimate Spacer Process 及Notch Gate Structure)來對通道產生應力藉以提昇載子的移動力: (1)Ultimate Spacer Process,相較於傳統製程技術,其Spacer形狀有如一個對稱的L形,可以有效率的傳達閘極上方的CESL應力到元件之載子通道。如此更加顯著提升元件應力結構性能; (2) Notch Gate Structure, 為一個新型態之閘極結構,利用橫向過蝕刻閘極的底層,使閘極結內凹。也更容易傳達CESL應力到元件通道。
接著,為了解決薄閘極氧化層所造成之閘極漏電流困擾,因而導入了高介電材料於製程中。但高介電材料卻因其高缺陷特性,使元件的臨界電壓偏高,造成元件製程特性無法達到需要的規格。本論文在第三章節討論如何利用釓摻雜入鉿的薄層裡,藉此調整元件的功函數,使其臨界電壓達到需要的標準。但釓極容易在元件的後續退火過程中,因高溫而產生擴散現象。因此,我們利用氮氣電漿製程去有效的控制釓的摻雜擴散的分佈,藉此去得到較好的臨界電壓控制。此外,我們利用氧氣環境下的後續沉積退火來改善高介電材料的高缺陷性。在不影響元件的等效氧化層(EOT)厚度下,此退火可改善元件的正偏壓溫度不穩定性(PBTI),時間依靠介電質崩毀(TDDB)及稍微提升元件的載子遷移率。
又在本篇論文的第四章,吾人討論了如何在高介電材料閘極結構下,結合矽鍺通道製程,利用矽鍺材料對矽造成的壓縮應力,提升P型金氧半場效電晶體的特性。
最後,我們考慮高介電材料的未來發展方向。因為傳統金氧半場效電晶體製程都是閘極優先型製程(Gate First),所以高介電材料非常容易因為後續的高溫源/汲極退火,造成材料品質上的劣化。所以勢必要導入較複雜的閘極後續製程(Gate Last)到高介電材料製程技術裡。因此,我們利用此兩種不同製程的28 奈米金氧半場效電晶體來驗證出閘極後續製程可有效的避免熱預算問題而得到更好之電晶體特性。
As CMOS process scaling down to the deep submicron regime, to enhance device performance with shrinking down gate length becomes very difficult. Many factors such as lithography limitation, large gate leakage and reliability concerns will restrict gate length continuously shrinking. Thus, fully silicide and strain technology have been investigated widely for the advanced CMOS technology, because it is comparable to the present process.
In this dissertation, firstly, we studied how to enhance device performance using two novel gate structures (ultimate spacer process and notch gate structure) to enhance CESL (contact etch stop layer) strain engineering. With the ultimate spacer process, a nice spacer shape will be resulted, and the notch gate features a very narrow bottom structure using over etching. Both of structures can transfer the CESL stress into channel more effectively than the conventional one, thus improving device performance more significantly.
Next, high-k material should be used in deep nano CMOS devices with thinner gate oxide to overcome the increasing gate leakage. But the large traps in the high-k material leads the high-k gate device also has the Fermi-level pinning issue. It would make threshold voltage too high to be optimized. Hence, we incorporated Gd in the Hf-base high-k gate to adjust device work function (chapter 3), and thus shifting the threshold voltage. Besides, we used NH3 plasma treatment to suppress Gd diffusion and thus improving channel interface state, because Gd is very easy to diffuse into Si channel.
For the reliability concern, a post deposition annealing (PDA) under oxygen gas ambient after high-k deposition was used. The PDA process could improve both of the positive bias temperature instability (PBTI) and time dependent dielectric breakdown (TDDB) reliability issues. Moreover, it could also increase device mobility without degrading equivalent oxide thickness (EOT).
Then, in the chapter 4, we describe of merging high-k material and SiGe channel technology to enhance device performance. The SiGe layer on Si substrate provides a compressive stress, which is beneficial to MOSFET.
Finally, we compare the performance of 28 nm high k devices with Gate First and Gate Last approaches, and found that the Gate last process is better for the high-k material is degraded easily in the source/drain annealing process. Thus we conclude the present used Gate first process with a larger thermal budget would be replaced by the Gate last process in future, even although it has more complicated in preparing process.
[1.1] G. E. Moore, “Gramming More components onto integrated circuits,” Electronics 38, 1965.
[1.2] B. Yu, H. Wang, C. Ricobene, Q. Xiang, and m.R. Lin, “Limits of gate-oxide scaling in nano-transistors,“ VLSI symp., pp. 90-91, 2000.
[1.3] W. K. Henson, N. Yang, S. Kubicek, E. M. Vogel, J. J. Wortman, K. D. Meyer, and A. Naem, “Analysis of Leakage Current and Impact on Off-State Power Consumption for CMOS Technology in the 100-nm Regime,” IEEE Trans. On Electron Devices, vol. 47, no. 7, pp. 1393-1400, 2000.
[1.4] Y. C. Yeo, Q. Lu, W. C. Lee, T. J. King, C. Hu, X. Wang, X. Guo, and T. P. Ma, “Direct Tunneling Gate Leakage Current in Transistors with Ultrathin Silicon Nitride Gate Dielectric,” IEEE Electronic Letters, vol. 21, no. 11, pp. 540-542, 2000.
[1.5] Y. C. Yeo, T. J. King, and C. Hu, “MOSFET Gate Leakage Modeling and Selection Guide for Alternative Gate Dielectrics Based on Leakage Considerations,” IEEE Trans. On Electron Devices, vol. 50, no. 4, pp. 1027-1035, 2003.
[1.6] G. G. Shahidi, “Challenges of CMOS Scaling at below 0.1 μm,” The 12th International Conference on Microelectronics, pp. 5-8, 2000.
[1.7] Y. Taur, “CMOS Scaling Beyond 0.1μm: How Far Can It Go?” VLSI Symp. Tech. Dig., pp. 6-9, 1999.
[1.8] Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S. H. Lo, G. A. Sai-Halasz, R. G. Viswanathan, H. J. C. Wann, S. J. Wind, and H. S. Wong, “CMOS Scaling into the Nanometer Regime,” Proc. of IEEE, vol. 85, no. 4, pp. 486-504, 1997.
[1.9] P. M. Zeitzoff, “MOSFET Scaling Trends and Challenges Through The End of The Roadmap,” Proc. of IEEE Custom Integrated Circuit Conference, pp. 233-240, 2004.
[1.10] S. Song, J. H. Yi, W. S. Kim, J. S. Lee, K. Fujihara, H. K. Kang, J. T. Moon, and M. Y. Lee, “CMOS Device Scaling Beyond 100nm,” IEDM Tech. Dig., pp. 235-238, 2000.
[1.11] S. Yang, “High performance logic technology-scaling trend and future challenges,” Proc. ICSICT Tech. Dig., pp. 62-68, 2001.
[1.12] K. Hosaka, T. Kurahashi, K. Kawamura, T. Aoyama, Y. Mishima, K. Suzuki, S. Sato, "A comprehensive study of fully-silicided gates to achieve wide-range work function differences (0.91 eV) for high-performance CMOS devices," VLSI Technology, 2005. Digest of Technical Papers. 2005 Symposium on , pp. 66- 67, 2005.
[1.13] C.H. Huang, D.S. Yu, A. Chin, C. H. Wu, W. J. Chen, Zhu Chunxiang, M.F. Li, Byung Jin Cho, Dim-Lee Kwong, "Fully silicided NiSi and germanided NiGe dual gates on SiO2/Si and Al2O3/Ge-on-insulator MOSFETs," Electron Devices Meeting, 2003. IEDM '03 Technical Digest. IEEE International, pp. 13.4.1- 13.4.4, 2003.
[1.14] Jam-Wem Lee,Yiming Li , "Effective electrostatic discharge protection circuit design using novel fully silicided N-MOSFETs in sub-100-nm device era," Nanotechnology, IEEE Transactions on , vol.5, no.3, pp. 211- 215, May 2006
[1.15] T. Mizuno, S. Takagi, N. Sugiyama, H. Satake, A. Kurobe, and A. Toriumi, “Electron and hole mobility enhancement in strained-Si MOSFET’s on SiGe-on-Insulator substrates fabricated by SIMOX technology,” IEEE Electron Dev. Lett., vol. 21, pp. 230-232, 2000.
[1.16] M. L. Lee, and E. A. Fitzgerald, “Hole mobility enhancements in nanometer-scale strained-Silicon heterostructures grown on Ge-rich relaxed Sil-xGex,” J.Appl. Phys. 94, pp. 2590-2596, 2003.
[1.17] S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C.-H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Zhiyong Ma, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, Phi Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, Y. El-Mansy, "A 90-nm logic technology featuring strained-silicon," Electron Devices, IEEE Transactions on , vol.51, no.11, pp. 1790- 1797, Nov. 2004.
[1.18] T. Komoda, A. Oishi, T. Sanuki, K. Kasai, H. Yoshimura, K. Ohno, A. Iwai, M. Saito, F. Matsuoka, N. Nagashima, T. Noguchi, "Mobility improvement for 45nm node by combination of optimized stress and channel orientation design," Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International , pp. 217- 220, 2004.
[1.19] S. Pidin, T. Mori, K. Inoue, S. Fukuta, N. Itoh, E. Mutoh, K.Ohkoshi, R. Nakamura, K. Kobayashi, K. Kawamura, T. Saiki, S. Fukuyama, S. Satoh, M. Kase, K. Hashimoto,"A novel strain enhanced CMOS architecture using selectively deposited high tensile and high compressive silicon nitride films," Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International , pp. 213- 216, Dec. 2004.
[1.20] L. A. Ragnarsson, L. Pantisano, V. Kaushik, S. I. Saito, Y. Shimamoto, S. D. Gendt, and M. Heyns, “The impact of sub monolayers of HfO2 on the device performance of high-k based transistors,” IEDM Tech. Dig. pp. 4.2.1-4.2.4, 2003.
[1.21] H. J. Osten, J. P. Liu, P. Gaworzewski, E. Bugiel, P. Zaumseil, "High-k gate dielectrics with ultra-low leakage current based on praseodymium oxide," Electron Devices Meeting, 2000. IEDM Technical Digest. International , pp.653-656, 2000.
[1.22] N. Zhan, K.L. Ng, M.C. Poon, C.W. Kok, M. Chan, H. Wong, "Characteristics of high quality hafnium oxide gate dielectric," Electron Devices Meeting, 2002. Proceedings. IEEE Hong Kong , pp. 43- 46, 2002.
[1.23] A.S. Oates, "Reliability issues for high-k gate dielectrics," Electron Devices Meeting, 2003. IEDM '03 Technical Digest. IEEE International , pp. 38.2.1- 38.2.4, 2003.
[1.24] T.P. Ma, "Opportunities and challenges for high-k gate dielectrics," Physical and Failure Analysis of Integrated Circuits, 2004, IPFA, pp.1- 4, July 2004.
[1.25] K. Rim, J. Chu, H. Chen, K. A. Jenkins, T. Kanarsky, K. Lee, A. Mocuta, H. Zhu, R. Roy, J. Newbury, J. Ott, K. Petrarca, P. Mooney, D. Lacey, S. Koester, K. Chan, D. Boyd, M. Ieong, and H. S. Wong, “Characteristics and device and design of sub-100nm strained Si N- and PMOSFETs,” VLSI symp., pp. 98-99, 2002.
[1.26] J.S. Brugler, P.G.A. Jespers, "Charge pumping in MOS devices," Electron Devices, IEEE Transactions on , vol.16, no.3, pp. 297- 302, Mar 1969.
[1.27] P. Heremans, J. Witters, G. Groeseneken, H. E. Maes, "Analysis of the charge pumping technique and its application for the evaluation of MOSFET degradation," Electron Devices, IEEE Transactions on , vol.36, no.7, pp.1318-1335, Jul 1989.
[1.28] G. Groeseneken, H.E. Maes, N. Beltran, R.F. De Keersmaecker, "A reliable approach to charge-pumping measurements in MOS transistors," Electron Devices, IEEE Transactions on , vol.31, no.1, pp. 42- 53, Jan 1984.
[1.29] R.E. Paulsen, M.H. White, "Theory and application of charge pumping for the characterization of Si-SiO2 interface and near-interface oxide traps," Electron Devices, IEEE Transactions on , vol.41, no.7, pp.1213-1216, Jul 1994.
[1.30] Y. Maneglia, D. Bauza, "Extraction of slow oxide trap concentration profiles in metal–oxide–semiconductor transistors using the charge pumping method," Journal of Applied Physics, vol.79, no.8, pp.4187-4192, Apr 1996.
[1.31] F.P. Heiman, G. Warfield,"The effects of oxide traps on the MOS capacitance," Electron Devices, IEEE Transactions on , vol.12, no.4, pp. 167- 178, Apr 1965.
[1.32] S. Jakschik, A. Avellan, U. Schroeder, and J. W. Bartha, “Influence of Al2O3 dielectrics on the trap depth profiles in MOS devices investigated by the charge-pumping method,” Electron Devices, IEEE Transactions on , vol.51, no.12, pp.2252-2255, Dec 2004.
[1.33] C.Y. Lu, K.S. Chang-Liao, P.H. Tsai, T.K. Wang, "Depth Profiling of Border Traps in MOSFET With High- Gate Dielectric by Charge-Pumping Technique," Electron Device Letters, IEEE , vol.27, no.10, pp.859-862, Oct. 2006.
[1.34] A. Kerber, E. Cartier, L. Pantisano, M. Rosmeulen, U. Degraeve, T. Kauerauf, G. Groeseneken, H.E. Maes, U. Schwalke, “Characterization of the VT-instability in SiOdHf0a gate dielectrics”, Proceedings of the IRPS-conference (International Reliability Physics Symposium), p. 41-45, 2003.
[1.35] C.D.Young, D. Heh, R. Choi, J.J. Peterson, J. Barnett, B.H. Lee, P. Zeitzoff, G.A. Brown, G. Bersuker, "Detection of Trap Generation in High-κ Gate Stacks due to Constant Voltage Stress," VLSI Technology, Systems, and Applications, 2006 International Symposium on , pp.1-2, 24-26 April 2006.
[2.1] S. Pidin, T. Mori, K. Inoue, S. Fukuta, N. Itoh, E. Mutoh, K. Ohkoshi, R. Nakamura, K. Kobayashi, K. Kawamura, T. Saiki, S. Fukuyama, S. Satoh,M. Kase, K. Hashimoto, “A Novel Strain Enhanced CMOS Architecture Using Selectively Deposited HighTensile and High Compressive Silicon Nitride Films,” IEDM Technol. Dig., pp. 213, 2004.
[2.2] Y.C. Liu, J.W. Pan, T.Y. Chang, P.W. Liu, B.C. Lan, C.H. Tung, C.H. Tsai, T.F. Chen, C.J. Lee, W.M. Wang, Y.A. Chen, H.L. Shih, L.Y. Tung, L.W. Cheng, T.M. Shen, S.C. Chiang, M.F. Lu,W.T. Chang, Y.H. Luo, D. Nayak, D. Gitlin, H.L. Meng, C.T. Tsai, “Single stress liner for both NMOS and PMOS current enhancement by a novel ultimate spacer process,” IEDM Technol. Dig., pp. 836, 2005.
[2.3] C.T. Lin, C.H. Hsu, L.W. Chen, T.F. Chen, C.R. Hsu, C.H. Lin, S. Chiang, D.C. Cho, C.T. Tsai, G.H. Ma, “Novel FUSI Strained Engineering for 45-nm Node CMOS Performance Enhancement,” VLSI Technol. Dig., pp. 114, 2006.
[2.4] C.T. Lin,M. Ramin, M. Pas, R.Wise, Y.K. Fang, C.H. Hsu, Y.T. Huang, L.W. Cheng, M. Ma, “CMOS Dual-Work-Function Engineering by Using Implanted Ni-FUSI,” IEEE Electron Device Lett., pp. 831, 2007.
[2.5] S. Yu, J.P. Lu, F. Mehrad, H. Bu, A. Shanware, M. Ramin, M. Pas, M.R. Visokay, S. Vitale, S.H. Yang, P. Jiang, L. Hall, C. Montgomery, Y. Obeng, C. Bowen, H. Hong, J. Tran, R. Chapman, S. Bushman, C.Machala, J. Blatchford, R. Kraft, L. Colombo, S. Johnson, B. McKee, “45-nm node NiSi FUSI on nitrided oxide bulk CMOS fabricated by a novel integration process,” IEDM Technol. Dig., pp. 231, 2005.
[2.6] R. Ranade, T. Ghani, K. Kuhn, K. Mistry, S. Pae, L. Shifren, M. Stettler, K. Tone, S. Tyagi, M. Bohr, “High Performance 35nm LGATE CMOS Transistors Featuring NiSi Metal Gate (FUSI), Uniaxial Strained Silicon Channels and 1.2nm Gate Oxide,” IEDM Technol. Dig., pp. 227, 2005.
[2.7] S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C.H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. hifren, B. Tufts, S. Tyagi, M. Bohr, Y.E. Mansy, “A 90-nm logic technology featuring strained-silicon,” IEEE Trans. Electron Devices., pp.1790, 2004.
[2.8] C.H. Ge, C.C Lin, et al. “Process-strained Si (PSS) CMOS technology featuring 3D strain engineering,” IEDM Tech Dig., pp. 3.7.1–3.7.4, 2003.
[2.9] C.M. Lai, Y.K. Fang, C.Y. Lin, W.K. Yeh, “The geometry effect of contact etch stop layer impact on device performance and reliability for 90 nm SOI n-MOSFETs,” IEEE Trans Electron Dev., pp. 2779–85, 2006.
[2.10] W. Zhao, J. He, R.E. Belford, L.E. Wernersson, A. Seabaugh, “ Partially depleted SOI MOSFETs under uniaxial tensile strain,” IEEE Trans Electron Dev., pp. 317–23, 2004.
[2.11] T. Ghani, M. Armstrong, et al. ”A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors,” IEDM Tech Dig., pp. 978–80, 2003.
[2.12] K. Mistry, M. Armstrong, et al. “Delaying forever: Uniaxial strained silicon transistors in a 90 nm CMOS technology,” VLSI Symp Tech Dig., pp 50–1, 2004.
[2.13] T. Matsumoto, S. Maeda, H. Dang, et al. “Novel SOI wafer engineering using low stress and high mobility CMOSFET with (100) channel for embedded RF/analog Applications,” IEDM Tech Dig., pp. 663–6, 2002.
[2.14] S. Pidin, T. Mori, K. Inoue, et al. “A novel strain enhanced CMOS architecture using selectively deposited high tensile and high compressive silicon nitride films,” IEDM Tech Dig., pp. 216, 2004.
[2.15] K. Goto, S. Satoh, H. Ohta, S. Fukuta, et al. “Technology booster using strainenhancing laminated SiN (SELS) for 65 nm node HP MPUs,” IEDM Tech Dig., pp. 209–12, 2004.
[2.16] S.E. Thompson, M. Armstrong, C. Auth, et al. “A 90 nm logic technology featuring strained-silicon,” IEEE Trans Electron Dev., pp. 1790–7, 2004.
[2.17] S. Eneman, P. Verheyen, R. Rooyackers, et al. “Layout impact on the performance of a locally strained PMOSFET,” VLSI Symp Tech Dig., pp. 22–3, 2005.
[2.18] T. Ghani, S. Ahmed, P. Aminzadeh, et al. “100 nm gate length high performance/low power CMOS transistor structure,” IEDM Tech Dig., pp. 415, 1999.
[2.19] P.R. Chidambaram, C. Bowen, Srinivasan, Charles, R. WiseMachala, Chakravarthi. “Fundamentals of silicon material properties for successful exploitation of strain engineering in modern CMOS manufacturing,” IEEE Trans Electron Dev., pp. 944–64, 2006.
[2.20] R. Gwoziecki, T. Skotnicki, “Smart pockets-total suppression of rolloff and rollup,” VLSI Symp Tech Dig., pp. 91–2, 1999.
[2.21] Y. Taur, E.J. Nowak, “CMOS devices below 0.1 lm: How high will performance go?” IEDM Tech Dig., pp. 215–8, 1997.
[2.22] W.K. Yeh, J.W. Chou, “Optimum halo structure for sub-0.1 lm CMOSFETs,” IEEE Trans Electron Dev., pp. 2357–62, 2001.
[2.23] C.T. Sah, F.H. Hielscher, “Evidence of the surface origin of the 1/f noise,” Phys Rev Lett ., pp. 956–8, 1966.
[2.24] M.J. Kirton, M.J. Uren, “Noise in solid-state microstructure: A new perspective on individual defects, interface stats and low-frequency (1/f) noise,” Adv Phys., pp. 367–468, 1989.
[2.25] D.M. Fleetwood, J.H. Scofield, “Evidence that similar point defects cause 1/f noise and radiation-induced-hole trapping in metal-oxide-semiconductor transistors,” Phys Rev Lett., pp. 579–82, 1990.
[2.26] T.L. Meisenheimer, D.M. Fleetwood, M.R. Shaneyfelt, L.C. Riewe, “1/f noise in n- and p-channel MOS devices through irradiation and annealing,” IEEE Trans Nucl Sci., pp. 1297–303, 1991.
[2.27] D. Wu, P.E. Hellberg, S.L. Zhang, M. Ostling, “Notched sub-100 nm gate MOSFETs for analog applications,” Proc SSIC Tech Dig., pp. 539–42, 2001.
[2.28] T. Komoda, A. Oishi, T. Sanuki, K. Kasai, H. Yoshimura, K. Ohno, et al. “Mobility improvement for 45 nm node by combination of optimized stress control and channel orientation design,” IEDM Tech Dig., pp. 217–20, 2004.
[3.1] T. Hori, Gate Dielectrics and MOS ULSIs. Berlin, Germany: Springer-Verlag, 1997.
[3.2] M. Koyama, A. Kaneko, T. Ino, M. Koike, Y. Kamata, R. Iijima, Y. Kamimuta, A. Takashima, M. Suzuki, C. Hongo, S. Inumiya, M. Takayanagi, and A. Nishiyama, “Effects of nitrogen in HfSiON gate dielectric on the electrical and thermal characteristics,” in IEDM Tech. Dig., pp. 849–852, 2002.
[3.3] C. H. Choi, S. J. Rhee,T. S. Jeon,N.Lu, J. H. Sim, R. Clark,M.Niwa, and D. L. Kwong, “Thermally stable CVD HfOxNy advanced gate dielectrics with poly-Si gate electrode,” in IEDM Tech. Dig., pp. 857–860, 2002.
[3.4] N. Umezawa, K. Shiraishi, K. Torii, M. Boero, T. Chikyow, H.Watanabe, K. Yamabe, T. Ohno, K. Yamada, and Y. Nara, “Role of nitrogen atoms in reduction of electron charge traps in Hf-based high-κ dielectrics,” IEEE Electron Device Lett., vol. 28, no. 5, pp. 363–365, May 2007.
[3.5] C. Choi, C.-S. Kang, C. Y. Kang, S. J. Rhee, M. S. Akbar, S. A. Krishnan, M. Zhang, and J. C. Lee, “Positive bias temperature instability effects of Hf-based nMOSFETs with various nitrogen and silicon profiles,” IEEE Electron Device Lett., vol. 26, no. 1, pp. 32–34, Jan. 2005.
[3.6] M. S. Akbar, H.-J. Cho, R. Choi, C. S. Kang, C. Y. Kang, C. H. Choi, S. J. Rhee, Y. H. Kim, and J. C. Lee, “Optimized NH3 annealing process for high-quality HfSiON gate oxide,” IEEE Electron Device Lett., vol. 25, no. 7, pp. 465–467, Jul. 2004.
[3.7] C. C. Hobbs, L. R. C. Fonseca, A. Knizhnik, V. Dhandapani, S. B. Samavedam, W. J. Taylor, J. M. Grant, L. G. Dip, D. H. Triyoso, R. I. Hegde, D. C. Gilmer, R. Garcia, D. Roan, M. L. Lovejoy, R. S. Rai, E. A. Hebert, H.-H. Tseng, S. G. H. Anderson, B. E. White, and P. J. Tobin, “Fermi-level pinning at the polysilicon/metal-oxide interface—Part II,” IEEE Trans. Electron Devices, vol. 51, no. 6, pp. 978–984, Jun. 2004.
[3.8] V. Narayanan, V. Paruchuri, N. Bojarczuk, B. Linder, B. Doris, Y. Kim, S. Zafar, J. Stathis, S. Brown, J. Arnold, M. Copel, M. Steen, E. Cartier, A. Callegari, P. Jamison, J.-P. Locquet, D. Lacey, Y. Wang, P. Batson, P. Ronsheim, R. Jammy, and M. Chudzik, “Band-edge high-performance high-k/metal gate n-MOSFETs using cap layers containing group IIA and IIIB elements with gate-first processing for 45 nm and beyond,” in Proc. Symp. VLSI Technol. Dig. Tech. Papers, pp. 178–179, 2006.
[3.9] H. Alshareef, H. Harris, H. Wen, C. Park, C. Huffman, K. Choi, H. Luan, P. Majhi, B. Lee, R. Jammy, D. Lichtenwalner, J. Jur, and A. Kingon, “Thermally stable N-metal gate MOSFETs using La-incorporated HfSiO dielectric,” in Proc. Symp. VLSI Technol. Dig. Tech. Papers, pp. 7–8, 2006.
[3.10] S. J. Rhee, H.-S. Kim, C. Y. Kang, C. H. Choi, M. S. Akbar, M. Zhang, T. Lee, I. Ok, F. Zhu, S. A. Krishnan, and J. C. Lee, “Structural optimization and electrical characteristics of ultra-thin gadolinium (Gd2O3) incorporated HfO2 n-MOSFETs,” in Proc. 63rd DRC, vol. 1, pp. 219–220, 2005.
[3.11] H.-S. Jung, S. Han, H. Lim, Y.-S. Kim, M. Kim, M. Yu, C.-K. Lee, M. Lee, Y.-S. You, Y. Chung, S. Kim, H. Baik, J.-H. Lee, N.-I. Lee, and H.-K. Kang, “Dual high-k gate dielectric technology using selective AlOx etch (SAE) process with nitrogen and fluorine incorporation,” in Proc. Symp. VLSI Technol. Dig. Tech. Papers, pp. 162–163, 2006.
[3.12] M. Aoulaiche, M. Houssa, W. Deweerd, L. Trojman, T. Conard, J. W. Maes, S. De Gendt, G. Groeseneken, H. E. Maes, and M. M. Heyns, “Nitrogen incorporation in HfSiO(N)/TaN gate stacks: Impact on performances and NBTI,” IEEE Electron Device Lett., vol. 28, no. 7, pp. 613–615, Jul. 2007.
[3.13] M. Aoulaiche, M. Houssa, T. Conard, S. De Gendt, G. Groeseneken, H. E. Maes, and M. M. Heyns, “Postdeposition-anneal effect on negative bias temperature instability in HfSiON gate stacks,” IEEE Trans. Device Mater. Rel., vol. 7, no. 1, pp. 146–151, Mar. 2007.
[3.14] B. J. O’Sullivan, R. Mitsuhashi, H. Okawa, N. Sengoku, T. Schram, G. Groeseneken, S. Biesemans, T. Nakababyashi, A. Ikeda, and M. Niwa, “Defect profiling and the role of nitrogen in lanthanum oxide-capped high-k dielectrics for nMOS applications,” in Proc. Int. Conf. Solid State Devices Mater., pp. 680–681, 2008.
[3.15] P. Samanta, Z. Chunxiang, and C. Mansun, “Reliability analysis of thin HfO2/SiO2 gate dielectric stack,” in Proc. IWPSD, pp. 142–145, 2007.
[3.16] S. Motoyuki, Y. Kikuo, S. Kenji, M. Seiichi, Y. Keisaku, T. Chihiro, H. Ryu, I. Seiji, A. Takayuki, N. Yasuo, and O. Yuzuru, “Comprehensive analysis of positive and negative bias temperature instabilities in high-k/ metal gate stack metal-oxide-silicon field effect transistors with equivalent oxide thickness scaling to sub-1 nm,” Jpn. J. Appl. Phys., vol. 47, no. 4, pp. 2354–2359, 2008.
[3.17] G. Thareja, H. C. Wen, R. Harris, P. Majhi, B. H. Lee, and J. C. Lee, “NMOS compatible work function of tan metal gate with gadolinium oxide buffer layer on Hf-based dielectrics,” IEEE Electron Device Lett., vol. 27, no. 10, pp. 802–804, Oct. 2006.
[3.18] H. D. Xiong, D. Heh, M. Gurfinkel, Q. Li, Y. Shapira, C. Richter, G. Bersuker, R. Choi, and J. S. Suehle, “Characterization of electrically active defects in high-k gate dielectrics by using low frequency noise and charge pumping measurements,” Microelectron. Eng., vol. 84, no. 9/10, pp. 2230–2234, Sep./Oct. 2007.
[3.19] M. Sato, N. Umezawa, N. Mise, S. Kamiyama, M. Kadoshima, T. Morooka, T. Adachi, T. Chikyow, K. Yamabe, K. Shiraishi, S. Miyazaki, A. Uedono, K. Yamada, T. Aoyama, T. Eimori, Y. Nara, and Y. Ohji, “Physical understanding of the reliability improvement of dual high-k CMOSFETs with the fifth element incorporation into HfSiON gate dielectrics,” in Proc. Symp. VLSI Technol., pp. 66–67 , Jun. 2008.
[3.20] J. Buckley, M. Bocquet, G. Molas, M. Gely, P. Brianceau, N. Rochat, E. Martinez, F. Martin, H. Grampeix, J. P. Colonna, A. Toffoli, V. Vidal, C. Leroux, G. Ghibaudo, G. Pananakakis, C. Bongiorno, D. Corso, S. Lombardo, B. DeSalvo, and S. Deleonibus, “In-depth investigation of Hf-based high-k dielectrics as storage layer of charge-trap NVMs,” in IEDM Tech. Dig., pp. 1–4, 2006.
[3.21] J. J. Chambers, A. L. P. Rotondaro, J. McPherson, and L. Colombo, “Characterization and comparison of the charge trapping in HfSiON and HfO2 gate dielectrics,” in IEDM Tech. Dig., Dec. 8–10, pp. 38.6.1–38.6.4, 2003.
[3.22] J. P. Kim, Y.-S. Kim, H. J. Lim, J. H. Lee, S. J. Doh, H.-S. Jung, S.-K. Han, M.-J. Kim, J.-H. Lee, N.-I. Lee, H.-K. Kang, K.-P. Suh, and Y.-S. Chung, “HCI and BTI characteristics of ALD HfSiO(N) gate dielectrics as the compositions and the post treatment conditions,” in IEDM Tech. Dig., Dec. 13–15, pp. 125–128, 2004.
[3.23] G.D. Wilk, R.M. Wallace, J.M. Anthony, “High-k gate dielectrics: current status and materials properties considerations,” J Appl Phys, pp. 5243–75, 2001.
[3.24] B.H. Lee, C.D. Young, R. Choi, J.H. Sim, G. Bersuker, C.Y. Kang, et al. “Intrinsic characteristics of high-k devices and implications of fast transient charging effects (FTCE), electron devices meeting,” 2004. In: IEDM technical digest. IEEE international, pp. 859–62, December 2004.
[3.25] J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors,” Rep Prog Phys, pp. 327–96, 2006.
[3.26] A. Kerber, E. Cartier, L. Pantisano, M. Rosmeulen, R. Degraeve, et al. “Characterization of the VT instability in SiO2/HfO2 gate dielectrics,” In: Proceeding 41st annual IEEE international reliability physics symposium, pp. 41–5, 2003.
[3.27] S. Zafar, A. Kumar, E. Gusev, E. Cartier, “Threshold voltage instabilities in high k gate dielectric stacks,” IEEE Trans Dev Mater Reliab, pp.45–64, 2005.
[3.28] P. Hokyung, C. Rino, C. S. Seung, C. Man, C.D. Young, G. Bersuker, et al. “Decoupling of cold carrier effects in hot carrier reliability of HfO2 gated nMOSFETs. In: Reliability physics symposium proceedings,” 2006. 44th annual, IEEE international, pp. 200–3, March 2006.
[3.29] M. Sato, N. Umezawa, J. Shimokawa, H. Arimura, S. Sugino, A. Tachibana, et al. “Physical model of the PBTI and TDDB of la incorporated HfSiON gate dielectrics with pre-existing and stress-induced defects,” Electron devices meeting, 2008. IEDM 2008. IEEE international, pp. 1–4, December 2008.
[3.30] K. Torii, H. Kitajima, T. Arikado, K. Shiraishi, S. Miyazaki, K. Yamabe, et al. “Physical model of BTI, TDDB and SILC in HfO2-based high-k gate dielectrics. Electron devices meeting,” 2004. In: IEDM technical digest. IEEE international, pp. 129–32, December 2004.
[3.31] A.S. Foster, G.F. Lopez, A.L. Shluger, R.M. Nieminen, “Vacancy and interstitial
defects in hafnia,” Phys Rev B, pp. 174117, 2002.
[3.32] K. Xiong, Y. Du, K. Tse, J. Robertson, “Defect states in the high-dielectric-constant gate oxide HfSiO4,” J Appl Phys, pp.101, 2007.
[3.33] G. Bersuker, N. Chowdhury, C. Young, D. Heh, D. Misra, R. Choi, “Progressive breakdown characteristics of high-k/metal gate stacks,” IRPS 2007, pp. 49–54, 2007.
[3.34] H.D. Xiong, D. Heh, M. Gurfinkel, Q. Li, Y. Shapira, C. Richter, et al. “Characterization of electrically active defects in high-k gate dielectrics by using low frequency noise and charge pumping measurements,” Microelectr Eng, pp.2230-4, 2007.
[4.1] H. R. Harris, P. Kalra, P. Majhi, M. Hussain, D. Kelly, J. Oh, D. Heh, C. Smith, J. Barnett, P. D. Kirsch, G. Gebara, J. Jur, D. Lichtenwalner, A. Lubow, T. P. Ma, G. Sung, S. Thompson, B. H. Lee, H.-H. Tseng, and R. Jammyet, “Band-engineered low PMOS VT with high-k/metal gates featured in a dual channel CMOS integration scheme,” in Proc. Symp. VLSI Technol., pp. 154–155, 2007.
[4.2] J. M. Hinckley, V. Sankaran, and J. Singh, “Charged carrier transport in Si1-xGex pseudomorphic alloys matched to Si strain-related transport improvements,” Appl. phys. Lett., vol. 55, pp. 2008,1989.
[4.3] S. L. Wu, “SiGe channel field-effect transistors on SIMOX substrates,” Semicond. Sci. Technol., vol. 20, no. 6, pp. 559, 2005.
[4.4] S. Suthram, P. Majhi, G. Sun, P. Kalra, H. R. Harris, K. J. Choi, D. Heh, J. Oh, D. Kelly, R. Choi, B. J. Cho, M. M. Hussain, C. Smith, S. Banerjee, W. Tsai, S. E. Thompson, H. H. Tseng, and R. Jammy, “High performance pMOSFETs using Si/Si1−xGex/Si quantum wells with high-k/metal gate stacks and additive uniaxial strain for 22 nm technology node,” in IEDM Tech. Dig., pp. 727–730, 2007.
[4.5] S. L. Wu, and S. J. Chang, “Si field-effect transistor with doping dipole in buffer layer,” Appl. Phys. Lett., vol. 75, no. 18, 1, pp. 2848, 1999.
[4.6] J. M. Hinckley and J. Singh, “Hole transport theory in pseudomorphic Si1-xGex alloys grown on Si (001) substrates,” Phys. Rev. B, vol. 41, no. 5, pp. 2912, 1990.
[4.7] Z. Shi, D. Onsongo, and S. K. Banerjee, “Mobility and performance enhancement in compressively strained SiGe channel pMOSFETs,” Appl. Surf. Sci., vol. 224, no. 1-4, pp. 248, 2004.
[4.8] S. Tam, P. K. Ko, and C. Hu, “Lucky-electron model of channel hot-electron injection in MOSFET`s,” IEEE Trans. Electron Devices, vol. 31, no. 9, pp. 1116, 1984.
[5.1] C.Y. Kang, C.D. Young, J. Huang, P. Kirsch, D. Heh, P. Sivasubramani, H.K. Park, G. Bersuker, B.H. Lee, H.S. Choi, K.T. Lee, Y.-H. Jeong, J. Lichtenwalner, A.I. Kingon, H.-H. Tseng, R. Jammy, "The impact of la-doping on the reliability of low Vth high-k/metal gate nMOSFETs under various gate stress conditions," Electron Devices Meeting, 2008. IEDM 2008. IEEE International , pp.1-4, 15-17 Dec. 2008
[5.2] M. Sato, N. Umezawa, J. Shimokawa, H. Arimura, S. Sugino, A. Tachibana, M. Nakamura, N. Mise, S. Kamiyama, T. Morooka, T. Eimori, K. Shiraishi, K. Yamabe, H. Watanabe, K. Yamada, T. Aoyama, T. Nabatame, Y. Nara, Y. Ohji, "Physical model of the PBTI and TDDB of la incorporated HfSiON gate dielectrics with pre-existing and stress-induced defects," Electron Devices Meeting, 2008. IEDM 2008. IEEE International, pp.1-4, 15-17 Dec. 2008
[5.3]K. Kita, A. Toriumi, "Intrinsic origin of electric dipoles formed at high-k/SiO2 interface," Electron Devices Meeting, 2008. IEDM 2008. IEEE International, pp.1-4, 15-17 Dec. 2008
[5.4]G. Bersuker, C.S. Park, H.C. Wen, K. Choi, O. Sharia, A. Demkov, "Origin of the flat-band voltage (Vfb) roll-off phenomenon in metal/high-k gate stacks," Solid-State Device Research Conference, 2008. ESSDERC 2008. 38th European, pp.134-137, 15-19 Sept. 2008
[5.5] K. Choi, H.C. Wen, G. Bersuker, R. Harris, and B. H. Lee, "Mechanism of flatband voltage roll-off studied with Al2O3 film deposited on terraced oxide," Applied Physics Letters , vol.93, no.13, pp.133506-133506-3, Sep 2008
[5.6]S. Kamiyama, D. Ishikawa, E. Kurosawa, H. Nakata, M. Kitajima, M. Ootuka, T. Aoyama, Y. Nara, and Y. Ohji, "Systematic Study of Vth controllability using ALD-Y2O3, La2O3, and MgO2 layers with HfSiON/metal gate first n-MOSFETs for hp 32 nm bulk devices," Electron Devices Meeting, 2008. IEDM 2008. IEEE International , pp.1-4, 15-17 Dec. 2008
[5.7]C.D. Young, D. Heh, R. Choi, J.J. Peterson, J. Barnett, B.H. Lee, P. Zeitzoff, G.A. Brown, G. Bersuker, "Detection of Trap Generation in High-κ Gate Stacks due to Constant Voltage Stress," VLSI Technology, Systems, and Applications, 2006 International Symposium on, pp.1-2, 24-26 April 2006
[5.8]M. Rafik, X. Garros, G. Ribes, G. Ghibaudo, C. Hobbs, A. Zauner, M. Muller, V. Huard, C. Ouvard, "Impact of TiN Metal gate on NBTI assessed by interface states and fast transient effect characterization," Electron Devices Meeting, 2007. IEDM 2007. IEEE International, pp.825-828, 10-12 Dec. 2007
[5.9]H. Ota, A. Hirano, Y. Watanabe, N. Yasuda, K. Iwamoto, K. Akiyama, K. Okada, S. Migita, T. Nabatame, A. Toriumi, "Intrinsic Origin of Electron Mobility Reduction in High-k MOSFETs - From Remote Phonon to Bottom Interface Dipole Scattering," Electron Devices Meeting, 2007. IEDM 2007. IEEE International, pp.65-68, 10-12 Dec. 2007
[5.10]M. Sato, N. Umezawa, N. Mise, S. Kamiyama, M. Kadoshima, T. Morooka, T. Adachi, T. Chikyow, K. Yamabe, K. Shiraishi, S. Miyazaki, A. Uedono, K. Yamada, T. Aoyama, T. Eimori, Y. Nara, Y. Ohji, "Physical understanding of the reliability improvement of dual high-k CMOSFETs with the fifth element incorporation into HfSiON gate dielectrics," VLSI Technology, 2008 Symposium on, pp.66-67, 17-19 June 2008
[5.11]H.R. Harris, R. Choi, J.H. Sim, C.D. Young, P. Majhi, B.H. Lee, G. Bersuker, "Electrical observation of deep traps in high-κ/metal gate stack transistors," Electron Device Letters, IEEE , vol.26, no.11, pp. 839- 841, Nov. 2005
[5.12]C. Leroux, J. Mitard, G. Ghibaudo, X. Garros, G. Reimbold, B. Guillaumor, F. Martin, "Characterization and modeling of hysteresis phenomena in high K dielectrics," Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, pp. 737- 740, 13-15 Dec. 2004
[5.13]D. Heh, C.D. Young, Choi Rino, G. Bersuker, "Extraction of the Threshold-Voltage Shift by the Single-Pulse Technique," Electron Device Letters, IEEE , vol.28, no.8, pp.734-736, Aug. 2007
校內:立即公開