| 研究生: |
蔡旻軒 Tsai, Min-Hsuan |
|---|---|
| 論文名稱: |
利用化學氣相沉積法快速製備碲化銅奈米片應用於水系鋅離子電池集電器 Facilely Synthesize Cu2Te Nanosheets by Chemical Vapor Deposition Tellurization Process as a Current Collector for Aqueous Zinc-ion Batteries |
| 指導教授: |
陳雨澤
Chen, Yu-Ze |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 化學氣相沉積法 、碲化銅 、水合鋅電池 、鋅枝晶 、集電器 |
| 外文關鍵詞: | chemical vapor deposition, copper telluride, zinc batteries, zinc dendrites, current collector |
| 相關次數: | 點閱:66 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
具有資源豐富、成本低廉、無汙染、安全性高和組裝簡易等優點的水系鋅離子電池是目前具有替代商用鋰離子電池的最有潛力的儲能設備之一,但在電池充放電循環的過程中鋅陽極的表面會產生不提供能量且絕緣的鋅枝晶,持續成長後最後會導致電池短路。在此研究中,利用化學氣相沉積法快速地在銅箔上碲化合成均勻分布且大面積的碲化銅(Cu2Te) 奈米片。藉由改變製程溫度、製程壓力與成長時間等參數去控制碲化銅的形貌,並以對稱電池去探討當碲化銅作為集電器時鋅離子沉積時的穩定性以及組裝成全電池去做電化學的量測,更進一步了解碲化銅奈米片作為集電器時依靠它嗜鋅的基底與三維的結構使鋅離子的沉積更為穩定並成功地使鋅離子沉積於碲化銅奈米片的周圍以抑制鋅枝晶的產生,從而增加電池比電容量與延長電池的循環壽命。
Aqueous zinc ion batteries (AZIBs) have attracted extensive attention in recent years due to the merits of being low-cost, eco-friendly, safe, and easy to assemble, which are one of the most promising energy storage devices to replace commercial lithium-ion batteries. However, the uneven zinc plating/stripping and nucleation cause flake-like Zn dendrites growth, which has limited the performance of zinc batteries. In this work, Cu2Te nanosheet were produced uniformly distributed and large-area by chemical vapor deposition on copper foil. By varying the process temperature, pressure, and growth time to control the morphology of Cu2Te. Anode prepared by electrodepositing zinc on a novel current collector Cu2Te shows small voltage hysteresis. Moreover, we further understand the stability of zinc ion deposition and good cycle stability by Cu2Te@Zn | MnO2 cell. Cu2Te is an outstanding current collector because of its zincophilic property and three-dimensional structure thereafter, zinc ions are successfully deposited around the copper telluride nanosheet to inhibit the formation of zinc dendrites, thus increasing the specific capacity and extending the cycle life of the battery.
1. Li, M.; Lu, J.; Chen, Z. W.; Amine, K., 30 Years of Lithium-Ion Batteries. Advanced Materials 2018, 30 (33).
2. Huang, B.; Pan, Z. F.; Su, X. Y.; An, L., Recycling of lithium-ion batteries: Recent advances and perspectives. Journal of Power Sources 2018, 399, 274-286.
3. Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P., From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. Angewandte Chemie-International Edition 2018, 57 (1), 102-120.
4. Ji, B. F.; Zhang, F.; Song, X. H.; Tang, Y. B., A Novel Potassium-Ion-Based Dual-Ion Battery. Advanced Materials 2017, 29 (19).
5. Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q., Recent Advances in Aqueous Zinc-Ion Batteries. Acs Energy Letters 2018, 3 (10), 2480-2501.
6. Lu, L. L.; Ge, J.; Yang, J. N.; Chen, S. M.; Yao, H. B.; Zhou, F.; Yu, S. H., Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance. Nano Letters 2016, 16 (7), 4431-4437.
7. Tang, B. Y.; Shan, L. T.; Liang, S. Q.; Zhou, J., Issues and opportunities facing aqueous zinc-ion batteries. Energy & Environmental Science 2019, 12 (11), 3288-3304.
8. Xu, C. J.; Li, B. H.; Du, H. D.; Kang, F. Y., Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery. Angewandte Chemie-International Edition 2012, 51 (4), 933-935.
9. Winter, M.; Brodd, R. J., What are batteries, fuel cells, and supercapacitors? Chemical Reviews 2004, 104 (10), 4245-4269.
10. Cheng, F. Y.; Chen, J.; Gou, X. L.; Shen, P. W., High-power alkaline Zn-MuO(2) batteries using gamma-MnO2 nanowires/nanotubes and electrolytic zinc powder. Advanced Materials 2005, 17 (22), 2753-+.
11. Wang, R.; Liu, Y. X.; Tian, Z. M.; Shi, Y. Y.; Xu, Q. C.; Zhang, G. F.; Chen, J. B.; Zheng, W. J., Copper Telluride Nanosheet/Cu Foil Electrode: Facile Ionic Liquid-Assisted Synthesis and Efficient Oxygen Evolution Performance. Journal of Physical Chemistry C 2020, 124 (40), 22117-22126.
12. Feng, J. Q.; Gao, H. Y.; Li, T.; Tan, X.; Xu, P.; Li, M. L.; He, L.; Ma, D. L., Lattice-Matched Metal-Semiconductor Heterointerface in Monolayer Cu2Te. Acs Nano 2021, 15 (2), 3415-3422.
13. Zhou, Y. R.; Wang, X. N.; Shen, X. F.; Shi, Y. H.; Zhu, C. F.; Zeng, S.; Xu, H.; Cao, P.; Wang, Y. L.; Di, J. T.; Li, Q. W., 3D confined zinc plating/stripping with high discharge depth and excellent high-rate reversibility. Journal of Materials Chemistry A 2020, 8 (23), 11719-11727.
14. Zeng, Y. X.; Zhang, X. Y.; Qin, R. F.; Liu, X. Q.; Fang, P. P.; Zheng, D. Z.; Tong, Y. X.; Lu, X. H., Dendrite-Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Zn-Ion Batteries. Advanced Materials 2019, 31 (36).
15. Foroozan, T.; Yurkiv, V.; Sharifi-Asl, S.; Rojaee, R.; Mashayek, F.; Shahbazian-Yassar, R., Non-Dendritic Zn Electrodeposition Enabled by Zincophilic Graphene Substrates. Acs Applied Materials & Interfaces 2019, 11 (47), 44077-44089.
16. Li, C. P.; Shi, X. D.; Liang, S. Q.; Ma, X. M.; Han, M. M.; Wu, X. W.; Zhou, J., Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chemical Engineering Journal 2020, 379.
17. Liu, B. T.; Wang, S. J.; Wang, Z. L.; Lei, H.; Chen, Z. T.; Mai, W. J., Novel 3D Nanoporous Zn-Cu Alloy as Long-Life Anode toward High-Voltage Double Electrolyte Aqueous Zinc-Ion Batteries. Small 2020, 16 (22).
18. Yin, Y. B.; Wang, S. N.; Zhang, Q.; Song, Y.; Chang, N. N.; Pan, Y. W.; Zhang, H. M.; Li, X. F., Dendrite-Free Zinc Deposition Induced by Tin-Modified Multifunctional 3D Host for Stable Zinc-Based Flow Battery. Advanced Materials 2020, 32 (6).
19. Chen, T.; Wang, Y. A.; Yang, Y.; Huang, F.; Zhu, M. K.; Ang, B. T. W.; Xue, J. M., Heterometallic Seed-Mediated Zinc Deposition on Inkjet Printed Silver Nanoparticles Toward Foldable and Heat-Resistant Zinc Batteries. Advanced Functional Materials 2021, 31 (24).
20. Zeng, Y. X.; Sun, P. X.; Pei, Z. H.; Jin, Q.; Zhang, X. T.; Yu, L.; Lou, X. W., Nitrogen-Doped Carbon Fibers Embedded with Zincophilic Cu Nanoboxes for Stable Zn-Metal Anodes. Advanced Materials 2022, 34 (18).
21. Zhao, K. P.; Liu, K.; Yue, Z. M.; Wang, Y. C.; Song, Q. F.; Li, J.; Guan, M. J.; Xu, Q.; Qiu, P. F.; Zhu, H.; Chen, L. D.; Shi, X., Are Cu2Te-Based Compounds Excellent Thermoelectric Materials? Advanced Materials 2019, 31 (49).
22. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-669.
23. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A., Single-layer MoS2 transistors. Nature Nanotechnology 2011, 6 (3), 147-150.
24. Chang, Y. H.; Zhang, W.; Zhu, Y.; Han, Y.; Pu, J.; Chang, J. K.; Hsu, W. T.; Huang, J. K.; Hsu, C. L.; Chiu, M. H.; Takenobu, T.; Li, H.; Wu, C. I.; Chang, W. H.; Wee, A. T. S.; Li, L. J., Monolayer MoSe2 Grown by Chemical Vapor Deposition for Fast Photodetection. Acs Nano 2014, 8 (8), 8582-8590.
25. Xie, Z. J.; Lei, W. Y.; Zhang, W. F.; Liu, Y.; Yang, L.; Wen, X. K.; Chang, H. X., High-Performance Large-Scale Vertical 1T'/2H Homojunction CVD-Grown Polycrystalline MoTe2 Transistors. Advanced Materials Interfaces 2021, 8 (10).
26. Sirota, B.; Glavin, N.; Krylyuk, S.; Davydov, A. V.; Voevodin, A. A., Hexagonal MoTe2 with Amorphous BN Passivation Layer for Improved Oxidation Resistance and Endurance of 2D Field Effect Transistors. Scientific Reports 2018, 8.
27. Tongay, S.; Fan, W.; Kang, J.; Park, J.; Koldemir, U.; Suh, J.; Narang, D. S.; Liu, K.; Ji, J.; Li, J. B.; Sinclair, R.; Wu, J. Q., Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS2 and WS2 Monolayers. Nano Letters 2014, 14 (6), 3185-3190.
28. Chen, S. S.; Liu, H. T.; Chen, F. H.; Zhou, K.; Xue, Y. Z., Synthesis, Transfer, and Properties of Layered FeTe2 Nanocrystals. Acs Nano 2020, 14 (9), 11473-11481.
29. Wang, Y.; Wang, L.; Zhang, X.; Liang, X. J.; Feng, Y. Y.; Feng, W., Two-dimensional nanomaterials with engineered bandgap: Synthesis, properties, applications. Nano Today 2021, 37.
30. Ci, L.; Song, L.; Jin, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L.; Liu, F.; Ajayan, P. M., Atomic layers of hybridized boron nitride and graphene domains. Nature Materials 2010, 9 (5), 430-435.
31. Wang, Q. C.; Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Zeng, J.; Song, Y. H.; Duan, X. D.; Wang, D. S.; Li, Y. D., Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy & Environmental Science 2020, 13 (6), 1593-1616.
32. Amani, M.; Tan, C. L.; Zhang, G.; Zhao, C. S.; Bullock, J.; Song, X. H.; Kim, H.; Shrestha, V. R.; Gao, Y.; Crozier, K. B.; Scott, M.; Javey, A., Solution-Synthesized High-Mobility Tellurium Nanoflakes for Short-Wave Infrared Photodetectors. Acs Nano 2018, 12 (7), 7253-7263.
33. Zhang, X. M.; Hu, J. P.; Cheng, Y. C.; Yang, H. Y.; Yao, Y. G.; Yang, S. Y. A., Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale 2016, 8 (33), 15340-15347.
34. Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P., Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556 (7699), 43-+.
35. Alagh, A.; Annanouch, F. E.; Umek, P.; Bittencourt, C.; Sierra-Castillo, A.; Haye, E.; Colomer, J. F.; Llobet, E., CVD growth of self-assembled 2D and 1D WS2 nanomaterials for the ultrasensitive detection of NO2. Sensors and Actuators B-Chemical 2021, 326.
36. Zhang, Y.; Chu, J. W.; Yin, L.; Shifa, T. A.; Cheng, Z. Z.; Cheng, R. Q.; Wang, F.; Wen, Y.; Zhan, X. Y.; Wang, Z. X.; He, J., Ultrathin Magnetic 2D Single-Crystal CrSe. Advanced Materials 2019, 31 (19).
37. Hong, Y. L.; Liu, Z. B.; Wang, L.; Zhou, T. Y.; Ma, W.; Xu, C.; Feng, S.; Chen, L.; Chen, M. L.; Sun, D. M.; Chen, X. Q.; Cheng, H. M.; Ren, W. C., Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science 2020, 369 (6504), 670-+.
38. Li, L. J.; Li, H. D.; Li, J.; Wu, H.; Yang, L.; Zhang, W. F.; Chang, H. X., Chemical Vapor Deposition-Grown Nonlayered alpha-MnTe Nanosheet for Photodetectors with Ultrahigh Responsivity and External Quantum Efficiency. Chemistry of Materials 2021, 33 (1), 338-346.
39. Feng, Q. L.; Zhu, Y. M.; Hong, J. H.; Zhang, M.; Duan, W. J.; Mao, N. N.; Wu, J. X.; Xu, H.; Dong, F. L.; Lin, F.; Jin, C. H.; Wang, C. M.; Zhang, J.; Xie, L. M., Growth of Large-Area 2D MoS2(l-x)Se2, Semiconductor. Advanced Materials 2014, 26 (17), 2648-2653.
40. Muratore, C.; Voevodin, A. A.; Glavin, N. R., Physical vapor deposition of 2D Van der Waals materials: a review. Thin Solid Films 2019, 688.
41. Altavilla, C.; Sarno, M.; Ciambelli, P., A Novel Wet Chemistry Approach for the Synthesis of Hybrid 2D Free-Floating Single or Multilayer Nanosheets of MS2@oleylamine (M=Mo, W). Chemistry of Materials 2011, 23 (17), 3879-3885.
42. Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y., Defect-Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution. Advanced Materials 2013, 25 (40), 5807-+.
43. Zhang, Z. C.; Li, W.; Wang, R. X.; Li, H. M.; Yan, J.; Jin, Q. Z.; Feng, P. Y.; Wang, K. L.; Jiang, K., Crystal water assisting MoS2 nanoflowers for reversible zinc storage. Journal of Alloys and Compounds 2021, 872.
44. Xu, X. L.; Han, B.; Liu, S.; Yang, S. Q.; Jia, X. H.; Xu, W. J.; Gao, P.; Ye, Y.; Dai, L., Atomic-Precision Repair of a Few-Layer 2H-MoTe2 Thin Film by Phase Transition and Recrystallization Induced by a Heterophase Interface. Advanced Materials 2020, 32 (23).
45. Zhou, L.; Zubair, A.; Wang, Z. Q.; Zhang, X.; Ouyang, F. P.; Xu, K.; Fang, W. J.; Ueno, K.; Li, J.; Palacios, T.; Kong, J.; Dresselhaus, M. S., Synthesis of High-Quality Large-Area Homogenous 1T ' MoTe2 from Chemical Vapor Deposition. Advanced Materials 2016, 28 (43), 9526-+.
46. Zhang, X.; Jin, Z. H.; Wang, L. Q.; Hachtel, J. A.; Villarreal, E.; Wang, Z. X.; Ha, T.; Nakanishi, Y.; Tiwary, C. S.; Lai, J. W.; Dong, L. L.; Yang, J. H.; Vajtai, R.; Ringe, E.; Idrobo, J. C.; Yakobson, B. I.; Lou, J.; Gambin, V.; Koltun, R.; Ajayan, P. M., Low Contact Barrier in 2H/1T' MoTe2 In-Plane Heterostructure Synthesized by Chemical Vapor Deposition. Acs Applied Materials & Interfaces 2019, 11 (13), 12777-12785.
47. He, D. Q.; Liao, Y. Q.; Cheng, Z. X.; Sang, X. H.; Yuan, L. X.; Li, Z.; Huang, Y. H., Facile one-step vulcanization of copper foil towards stable Li metal anode. Science China-Materials 2020, 63 (9), 1663-1671.
48. Lin, J. J.; Wang, H.; Tay, R. Y.; Li, H. L.; Shakerzadeh, M.; Tsang, S. H.; Liu, Z.; Teo, E. H. T., Versatile and scalable chemical vapor deposition of vertically aligned MoTe2 on reusable Mo foils. Nano Research 2020, 13 (9), 2371-2377.
49. Nguyen, M. C.; Choi, J. H.; Zhao, X.; Wang, C. Z.; Zhang, Z. Y.; Ho, K. M., New Layered Structures of Cuprous Chalcogenides as Thin Film Solar Cell Materials: Cu2Te and Cu2Se. Physical Review Letters 2013, 111 (16).
50. Zhang, B. G.; Yang, H.; Tian, Z.; Wang, J., Effect of Ni doping on thermoelectric properties of Ag2Te-Cu2Te composite material. Journal of Alloys and Compounds 2021, 870.
51. Qiu, Y. C.; Liu, Y.; Ye, J. W.; Li, J.; Lian, L. X., Synergistic optimization of carrier transport and thermal conductivity in Sn-doped Cu2Te. Journal of Materials Chemistry A 2018, 6 (39), 18928-18937.
52. Xiao, Y.; Wu, H. J.; Li, W.; Yin, M. J.; Pei, Y. L.; Zhang, Y.; Fu, L. W.; Chen, Y. X.; Pennycook, S. J.; Huang, L.; He, J.; Zhao, L. D., Remarkable Roles of Cu To Synergistically Optimize Phonon and Carrier Transport in n-Type PbTe-Cu2Te. Journal of the American Chemical Society 2017, 139 (51), 18732-18738.
53. Yin, L.; Cheng, R. Q.; Wen, Y.; Zhai, B. X.; Jiang, J.; Wang, H.; Liu, C. S.; He, J., High-Performance Memristors Based on Ultrathin 2D Copper Chalcogenides. Advanced Materials.
54. Xiao, G. J.; Zeng, Y.; Jiang, Y. Y.; Ning, J. J.; Zheng, W. T.; Liu, B. B.; Chen, X. D.; Zou, G. T.; Zou, B., Controlled Synthesis of Hollow Cu2-xTe Nanocrystals Based on the Kirkendall Effect and Their Enhanced CO Gas-Sensing Properties. Small 2013, 9 (5), 793-799.
55. Li, W.; Ma, Y. S.; Li, P.; Jing, X. Y.; Jiang, K.; Wang, D. H., Electrochemically Activated Cu2-xTe as an Ultraflat Discharge Plateau, Low Reaction Potential, and Stable Anode Material for Aqueous Zn-Ion Half and Full Batteries. Advanced Energy Materials 2021, 11 (42).
56. Matar, S. F.; Weihrich, R.; Kurowski, D.; Pfitzner, A., DFT calculations on the electronic structure of CuTe2 and Cu7Te4. Solid State Sciences 2004, 6 (1), 15-20.
57. Pandey, J.; Mukherjee, S.; Rawat, D.; Athar, S.; Rana, K. S.; Mallik, R. C.; Soni, A., Raman Spectroscopy Study of Phonon Liquid Electron Crystal in Copper Deficient Superionic Thermoelectric Cu2-xTe. Acs Applied Energy Materials 2020, 3 (3), 2175-2181.
58. Vouroutzis, N.; Frangis, N.; Manolikas, C., The double modulation superstructure of the room temperature stable phase of stoichiometric Cu2Te. Physica Status Solidi a-Applications and Materials Science 2005, 202 (2), 271-280.
59. Huang, M. H.; Maljusch, A.; Calle-Vallejo, F.; Henry, J. B.; Koper, M. T. M.; Schuhmann, W.; Bandarenka, A. S., Electrochemical formation and surface characterisation of Cu2-xTe thin films with adjustable content of Cu. Rsc Advances 2013, 3 (44), 21648-21654.
60. Kavirajan, S.; Harish, S.; Archana, J.; Shimomura, M.; Navaneethan, M., Phase transition induced thermoelectric properties of Cu2Te by melt growth process. Materials Letters 2021, 298.
61. Han, C.; Bai, Y.; Sun, Q.; Zhang, S. H.; Li, Z.; Wang, L. Z.; Dou, S. X., Ambient Aqueous Growth of Cu2Te Nanostructures with Excellent Electrocatalytic Activity toward Sulfide Redox Shuttles. Advanced Science 2016, 3 (5).
62. Qian, K.; Gao, L.; Li, H.; Zhang, S.; Yan, J. H.; Liu, C.; Wang, J. O.; Qian, T.; Ding, H.; Zhang, Y. Y.; Lin, X.; Du, S. X.; Gao, H. J., Epitaxial growth and air-stability of monolayer Cu2Te. Chinese Physics B 2020, 29 (1).
63. Liu, H. L.; Shi, X.; Xu, F. F.; Zhang, L. L.; Zhang, W. Q.; Chen, L. D.; Li, Q.; Uher, C.; Day, T.; Snyder, G. J., Copper ion liquid-like thermoelectrics. Nature Materials 2012, 11 (5), 422-425.
64. Lin, C. C.; Lee, W. F.; Lu, M. Y.; Chen, S. Y.; Hung, M. H.; Chan, T. C.; Tsai, H. W.; Chueh, Y. L.; Chen, L. J., Low temperature synthesis of copper telluride nanostructures: phase formation, growth, and electrical transport properties. Journal of Materials Chemistry 2012, 22 (15), 7098-7103.
65. Wang, F.; Borodin, O.; Gao, T.; Fan, X. L.; Sun, W.; Han, F. D.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C. S., Highly reversible zinc metal anode for aqueous batteries. Nature Materials 2018, 17 (6), 543-+.
66. Xiong, W. L.; Yang, D. J.; Hoang, T. K. A.; Ahmed, M.; Zhi, J.; Qiu, X. Q.; Chen, P., Controlling the sustainability and shape change of the zinc anode in rechargeable aqueous Zn/LiMn2O4 battery. Energy Storage Materials 2018, 15, 131-138.
67. Kang, L. T.; Cui, M. W.; Jiang, F. Y.; Gao, Y. F.; Luo, H. J.; Liu, J. J.; Liang, W.; Zhi, C. Y., Nanoporous CaCO3 Coatings Enabled Uniform Zn Stripping/Plating for Long-Life Zinc Rechargeable Aqueous Batteries. Advanced Energy Materials 2018, 8 (25).
68. Chao, D. L.; Zhu, C.; Song, M.; Liang, P.; Zhang, X.; Tiep, N. H.; Zhao, H. F.; Wang, J.; Wang, R. M.; Zhang, H.; Fan, H. J., A High-Rate and Stable Quasi-Solid-State Zinc-Ion Battery with Novel 2D Layered Zinc Orthovanadate Array. Advanced Materials 2018, 30 (32).
69. Zeng, Y. X.; Zhang, X. Y.; Meng, Y.; Yu, M. H.; Yi, J. N.; Wu, Y. Q.; Lu, X. H.; Tong, Y. X., Achieving Ultrahigh Energy Density and Long Durability in a Flexible Rechargeable Quasi-Solid-State Zn-MnO2 Battery. Advanced Materials 2017, 29 (26).
70. Li, H. F.; Han, C. P.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J.; Wang, Y. K.; Kang, F. Y.; Li, B. H.; Zhi, C. Y., An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy & Environmental Science 2018, 11 (4), 941-951.
71. Li, H. F.; Liu, Z. X.; Liang, G. J.; Huang, Y.; Huan, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Tang, Z. J.; Wang, Y. K.; Li, B. H.; Zhi, C. Y., Waterproof and Tailorable Elastic Rechargeable Yarn Zinc Ion Batteries by a Cross-Linked Polyacrylamide Electrolyte. Acs Nano 2018, 12 (4), 3140-3148.
72. Zhang, Q.; Luan, J. Y.; Fu, L.; Wu, S. G.; Tang, Y. G.; Ji, X. B.; Wang, H. Y., The Three-Dimensional Dendrite-Free Zinc Anode on a Copper Mesh with a Zinc-Oriented Polyacrylamide Electrolyte Additive. Angewandte Chemie-International Edition 2019, 58 (44), 15841-15847.
73. Zhang, N.; Cheng, F. Y.; Liu, Y. C.; Zhao, Q.; Lei, K. X.; Chen, C. C.; Liu, X. S.; Chen, J., Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)(2) Electrolyte for Rechargeable Aqueous Zn-Ion Battery. Journal of the American Chemical Society 2016, 138 (39), 12894-12901.
74. Han, S. D.; Kim, S.; Li, D. G.; Petkov, V.; Yoo, H. D.; Phillips, P. J.; Wang, H.; Kim, J. J.; More, K. L.; Key, B.; Klie, R. F.; Cabana, J.; Stamenkovic, V. R.; Fister, T. T.; Markovic, N. M.; Burrell, A. K.; Tepavcevic, S.; Vaughey, J. T., Mechanism of Zn Insertion into Nanostructured delta-MnO2: A Nonaqueous Rechargeable Zn Metal Battery. Chemistry of Materials 2017, 29 (11), 4874-4884.
75. Jiang, B. Z.; Xu, C. J.; Wu, C. L.; Dong, L. B.; Li, J.; Kang, F. Y., Manganese Sesquioxide as Cathode Material for Multivalent Zinc Ion Battery with High Capacity and Long Cycle Life. Electrochimica Acta 2017, 229, 422-428.
76. Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F., A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nature Energy 2016, 1.
77. Yan, M. Y.; He, P.; Chen, Y.; Wang, S. Y.; Wei, Q. L.; Zhao, K. N.; Xu, X.; An, Q. Y.; Shuang, Y.; Shao, Y. Y.; Mueller, K. T.; Mai, L. Q.; Liu, J.; Yang, J. H., Water-Lubricated Intercalation in V2O5· nH2O for High-Capacity and High-Rate Aqueous Rechargeable Zinc Batteries. Advanced Materials 2018, 30 (1).
78. Xia, C.; Guo, J.; Lei, Y. J.; Liang, H. F.; Zhao, C.; Alshareef, H. N., Rechargeable Aqueous Zinc-Ion Battery Based on Porous Framework Zinc Pyrovanadate Intercalation Cathode. Advanced Materials 2018, 30 (5).
79. Zhang, H. Z.; Wang, J.; Liu, Q. Y.; He, W. Y.; Lai, Z. Z.; Zhang, X. Y.; Yu, M. H.; Tong, Y. X.; Lu, X. H., Extracting oxygen anions from ZnMn2O4: Robust cathode for flexible all-solid-state Zn-ion batteries. Energy Storage Materials 2019, 21, 154-161.
80. Kang, Z.; Wu, C. L.; Dong, L. B.; Liu, W. B.; Mou, J.; Zhang, J. W.; Chang, Z. W.; Jiang, B. Z.; Wang, G. X.; Kang, F. Y.; Xu, C. J., 3D Porous Copper Skeleton Supported Zinc Anode toward High Capacity and Long Cycle Life Zinc Ion Batteries. Acs Sustainable Chemistry & Engineering 2019, 7 (3), 3364-+.
81. Qi, Z. C.; Xiong, T.; Chen, T.; Yu, C.; Zhang, M. C.; Yang, Y.; Deng, Z. J.; Xiao, H.; Lee, W. S. V.; Xue, J. M., Dendrite-Free Anodes Enabled by a Composite of a ZnAl Alloy with a Copper Mesh for High-Performing Aqueous Zinc-Ion Batteries. Acs Applied Materials & Interfaces 2021, 13 (24), 28129-28139.
82. Zhou, J. H.; Wu, F.; Mei, Y.; Hao, Y. T.; Li, L.; Xie, M.; Chen, R. J., Establishing Thermal Infusion Method for Stable Zinc Metal Anodes in Aqueous Zinc-Ion Batteries. Advanced Materials 2022, 34 (21).
83. Huang, Y. F.; Chang, Z. W.; Liu, W. B.; Huang, W. T.; Dong, L. B.; Kang, F. Y.; Xu, C. J., Layer-by-layer zinc metal anodes to achieve long-life zinc-ion batteries. Chemical Engineering Journal 2022, 431.
84. Efremova, A. O.; Volkov, A. I.; Tolstopyatova, E. G.; Kondratiev, V. V., EQCM study of intercalation processes into electrodeposited MnO2 electrode in aqueous zinc-ion battery electrolyte. Journal of Alloys and Compounds 2022, 892.