| 研究生: |
陳瑞怡 Chen, Ruei-Yi |
|---|---|
| 論文名稱: |
登革病毒第二型感染誘發之自噬反應及糖解作用:探討兩者之關係及在細胞及小鼠中對病毒複製及致病性之影響 Dengue virus type II infection induced autophagy and glycolysis: their relationship and effect on viral replication and pathogenesis both in vitro and in vivo |
| 指導教授: |
劉校生
Liu, Hsiao-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 登革病毒 、糖解作用 、自噬作用 |
| 外文關鍵詞: | Dengue virus type II, Glycolysis, Autophagy |
| 相關次數: | 點閱:100 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
登革病毒(dengue virus)經由蚊子傳播,造成登革熱出血熱(dengue hemorrhagic fever)以及登革熱休克症候群(dengue shock syndrome)。我們已發現登革病毒感染會誘發自噬反應(autophagy)並促進病毒複製。他人之研究指出登革病毒感染會增加糖解作用(glycolysis),也會促進病毒複製。本研究的主旨為探討登革病毒第二型感染誘發之自噬反應和糖解作用兩者之關係及在細胞及小鼠中對病毒複製及致病性之影響。本研究使用肺癌A549,神經細胞瘤SK-N-SH和肝癌Huh7細胞進行病毒感染。在飢餓條件下,與對照和紫外光去活化病毒的細胞組相比,活病毒感染可增加葡萄糖螢光類似物2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG)的攝取量,以及自噬LC3-II蛋白和己糖激酶-2(hexokinase-2, HK2)之表現量。進一步利用免疫螢光染色方式觀察,在登革病毒感染的細胞中,可見到自噬點(autophagic puncta)和HK2激酶表現量均增加。然而,感染的細胞中乳酸(lactate)生產沒有變化,顯示DENV2感染促進糖解流量(glycolytic flux) 不經由乳酸途徑。此外,登革病毒感染可誘導葡萄糖轉運蛋白-1(GLUT1)的表達,但對糖解酵素HK2的mRNA表達沒有影響,顯示其影響是在後轉錄階段。進一步證實,使用細胞自噬抑制劑spautin-1或在Atg5基因表現弱化A549細胞中(使用lentivirus載體),細胞內葡萄糖之攝取、糖解酵素HK2表現量和病毒產量均下降。同樣的,使用自噬誘發劑(amiodarone)可促進病毒感染之細胞內葡萄糖的攝取,糖解酵素表現量和病毒產量。此結果揭示細胞自噬可調控糖解作用和病毒複製。再使用葡萄糖類似物2-Deoxy-D-glucose(2DG)來阻斷糖解作用,如所預期2DG可降低葡萄糖之攝取,伴隨著糖解酵素HK2的表現量和病毒量之下降,意外的是細胞內之自噬活性卻增加,可能是由於葡萄糖缺乏造成。以顱內接種6日齡的ICR哺乳小鼠證實登革病毒第二型(strain PL046)能夠有效的感染小鼠,在接種後第6天小鼠體重降低及疾病症狀增加,並於第10天死亡。最後使用自噬抑製劑(3MA)和2DG抑制DENV2感染的小鼠體內之自噬和糖解作用。結果顯示LC3-II和HK2的蛋白表達均下降,而且藥物處理隻小鼠存活率較高。綜述之,本研究揭示登革病毒感染細胞或小鼠可同時增加宿主自噬反應、葡萄糖之吸收及HK2之表現量,這些反應可增加病毒複製量及小鼠之病情。而且糖解代謝過程受到在自噬反應之調控。
Dengue virus (DENV) transmits diseases through mosquitoes. Severe dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) mostly occurs in the individuals during secondary infection of a different DENV serotype. We have reported that DENV infection induces autophagic activity, which further promotes viral replication. Others reported that DENV infection increases glycolysis, which also promotes viral replication. This study intends to clarify the relationship among DENV induced autophagy, glycolysis, viral replication and pathogenesis both in vivo and in vitro. Here, we used lung cancer A549, neuroblastoma SK-N-SH and hepatoma Huh7 cells for DENV infection. Under starvation conditions, DENV2 infection of the cells increased fluorescent glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG) uptake, the protein levels of autophagy LC3 type II and the rate limiting glycolytic kinase hexokinase-2 (HK2), compared to the mock- and UV inactivated virus infected cells. DENV2 infected cells showed increased autophagic puncta and HK2 kinase by immunofluorescence staining. However, the lactate production did not change in DENV2-infected cells, indicating that DENV2 infection promoted glycolytic flux is lactate pathway independent. Furthermore, DENV2 infection increased the expression of glucose transporter-1 (GLUT1) protein, but showed no effect on mRNA expression of the glycolytic kinase HK2. We further demonstrated that the glucose uptake, glycolytic kinase levels and viral titer decreased by the autophagy inhibitor spautin-1, or in the Atg5 gene silenced A549 cells (using lentivirus-shAtg5). In contrast, autophagy inducer amiodarone increased glucose uptake, glycolytic kinases expression and viral titer. These data imply that autophagy regulates glycolysis and viral replication. We then used 2-Deoxy-D-glucose (2DG), a glucose analog, to block glycolysis, and revele that 2DG decreased glucose uptake, the expression of glycolytic kinases HK2 and viral titer. However, autophagic activity increased because of deficiency of glucose. We demonstrated that DENV2 (strain PL046) can effectively infect the mice six day old suckling, and showed that disease symptoms increased accompanied with decreased body weight at day 6. All mice died at day 10 post inoculation. We used autophagy inhibitor 3-methyladenine (3MA) and glycolysis inhibitor 2DG to study viral replication and pathogenesis of DENV2-infected mice. Our reveals showed that the survival rate of the mice was prolonged, and protein expression of LC3-II and HK2 decreased compared to the untreated mice. Altogether, this study reveal that DENV2 infection induces autophagy which regulate glucose uptake and HK2 protein expression. These events lead to increased viral titer and disease symptoms.
Abrantes, J. L., Alves, C. M., Costa, J., Almeida, F. C. L., Sola-Penna, M., Fontes, C. F. L., & Souza, T. M. L. (2012). Herpes simplex type 1 activates glycolysis through engagement of the enzyme 6-phosphofructo-1-kinase (PFK-1). Biochimica et Biophysica Acta - Molecular Basis of Disease, 1822(8), 1198-1206.
Adekola, K., Rosen, S. T., & Shanmugam, M. (2012). Glucose transporters in cancer metabolism. Current Opinion in Oncology, 24(6), 650-654.
Allonso, D., Andrade, I. S., Conde, J. N., Coelho, D. R., Rocha, D. C., da Silva, M. L., Ventura, G. T., Silva, E. .M., Mohana-Borges, R. (2015). Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity. Journal of Virology, 89(23), 11871-11883.
Augustin, R. (2010). The protein family of glucose transport facilitators: It's not only about glucose after all. IUBMB Life, 62(5), 315-333.
Bidet, K., & Garcia-Blanco, M. A. (2014). Flaviviral RNAs: Weapons and targets in the war between virus and host. Biochemical Journal, 462(2), 215-230.
Bollati, M., Alvarez, K., Assenberg, R., Baronti, C., Canard, B., Cook, S., Coutard, B., Decroly, E., de Lamballerie, X., Gould, E. A., Grard, G., Grimes, J. M., Hilgenfeld, R., Jansson, A. M., Malet, H., Mancini, E. J., Mastrangelo, E., Mattevi, A., Milani, M., Moureau, G., Neyts, J., Owens, R. J., Ren, J., Selisko, B., Speroni, S., Steuber, H., Stuart, D. I., Unge, T., Bolognesi, M. (2010). Structure and functionality in flavivirus NS-proteins: Perspectives for drug design. Antiviral Research, 87(2), 125-148.
Carlsson, S. R., & Simonsen, A. (2015). Membrane dynamics in autophagosome biogenesis. Journal of Cell Science, 128(2), 193-205.
Chen, Y., Zhang, J., & Zhang, X. Y. (2014). 2-NBDG as a Marker for Detecting Glucose Uptake in Reactive Astrocytes Exposed to Oxygen-Glucose Deprivation In Vitro. Journal of Molecular Neuroscience, 55(1), 126-130.
Cohen, G. N. (2014). Microbial biochemistry, third edition.
Cruz-Oliveira, C., Freire, J. M., Conceicao, T. M., Higa, L. M., Castanho, M. A., & Da Poian, A. T. (2015). Receptors and routes of dengue virus entry into the host cells. FEMS Microbiology Reviews, 39(2), 155-170.
Cui, L., Hou, J., Fang, J., Lee, Y. H., Costa, V. V., Wong, L. H., Chen, Q., Ooi, E. E., Tannenbaum, S. R., Chen, J., Ong, C. N. (2017). Serum metabolomics investigation of humanized mouse model of dengue virus infection. Journal of Virology, 91(14).
Cui, L., Lee, Y. H., Kumar, Y., Xu, F., Lu, K., Ooi, E. E., Tannenbaum, S. R., Ong, C. N. (2013). Serum Metabolome and Lipidome Changes in Adult Patients with Primary Dengue Infection. PLoS Neglected Tropical Diseases, 7(8).
Datan, E., Roy, S. G., Germain, G., Zali, N., McLean, J. E., Golshan, G., Harbajan, S., Lockshin, R. A., Zakeri, Z. (2016). Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation. Cell Death & Disease, 7, e2127.
Delgado, T., Carroll, P. A., Punjabi, A. S., Margineantu, D., Hockenbery, D. M., & Lagunoff, M. (2010). Induction of the Warburg effect by Kaposi's sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 107(23), 10696-10701.
Delgado, T., Sanchez, E. L., Camarda, R., & Lagunoff, M. (2012). Global Metabolic Profiling of Infection by an Oncogenic Virus: KSHV Induces and Requires Lipogenesis for Survival of Latent Infection. PLoS Pathogens, 8(8).
Duan, L., Perez, R. E., Davaadelger, B., Dedkova, E. N., Blatter, L. A., & Maki, C. G. (2015). p53-regulated autophagy is controlled by glycolysis and determines cell fate. Oncotarget, 6(27), 23135-23156.
Erickson, J. W., & Cerione, R. A. (2010). Glutaminase: a hot spot for regulation of cancer cell metabolism? Oncotarget, 1(8), 734-740.
Fontaine, K. A., Sanchez, E. L., Camarda, R., & Lagunoff, M. (2015). Dengue virus induces and requires glycolysis for optimal replication. Journal of Virology, 89(4), 2358-2366.
Glick, D., Barth, S., & Macleod, K. F. (2010). Autophagy: cellular and molecular mechanisms. Journal of Pathology, 221(1), 3-12.
Goins, W. F., Marconi, P., Krisky, D., Wolfe, D., Glorioso, J. C., Ramakrishnan, R., & Fink, D. J. (2002). Construction of replication-defective herpes simplex virus vectors. Current protocols in human genetics / editorial board, Jonathan L. Haines ... [et al.], Chapter 12.
Guzman, M. G. (2015). Dengue. Lancet, 385(9966), 453-465.
Hasawi, N. A., Alkandari, M. F., & Luqmani, Y. A. (2014). Phosphofructokinase: A mediator of glycolytic flux in cancer progression. Critical Reviews in Oncology/Hematology, 92(3), 312-321.
Heaton, N. S., Perera, R., Berger, K. L., Khadka, S., LaCount, D. J., Kuhn, R. J., & Randall, G. (2010). Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proceedings of the National Academy of Sciences of the United States of America, 107(40), 17345-17350.
Heaton, N. S., & Randall, G. (2010). Dengue virus-induced autophagy regulates lipid metabolism. Cell Host and Microbe, 8(5), 422-432.
Heiden Vander, M. G., Lunt, S. Y., Dayton, T. L., Fiske, B. P., Israelsen, W. J., Mattaini, K. R., Vokes, N. I., Stephanopoulos, G., Cantley, L. C., Metallo, C. M., Locasale, J. W. (2011) Metabolic pathway alterations that support: Cell Proliferation. Vol. 76. Cold Spring Harbor Symposia on Quantitative Biology (pp. 325-334).
Herrero, L. J., Zakhary, A., Gahan, M. E., Nelson, M. A., Herring, B. L., Hapel, A. J., Keller, P. A., Obeysekera, M., Chen, W., Sheng, K. C., Taylor, A., Wolf, S., Bettadapura, J., Broor, S., Dar, L., Mahalingam, S. (2013). Dengue virus therapeutic intervention strategies based on viral, vector and host factors involved in disease pathogenesis. Pharmacology and Therapeutics, 137(2), 266-282.
Hu, Z. Y., Xiao, L., Bode, A. M., Dong, Z., & Cao, Y. (2014). Glycolytic genes in cancer cells are more than glucose metabolic regulators. Journal of Molecular Medicine, 92(8), 837-845.
Huang, S. C., Chang, C. L., Wang, P. S., Tsai, Y., & Liu, H. S. (2009). Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication. Journal of Medical Virology, 81(7), 1241-1252.
Israelsen, W. J., & Vander Heiden, M. G. (2015). Pyruvate kinase: Function, regulation and role in cancer. Seminars in Cell and Developmental Biology, 43, 43-51. doi:10.1016/j.semcdb.2015.08.004
Jheng, J. R., Ho, J. Y., & Horng, J. T. (2014). ER stress, autophagy, and RNA viruses. Frontiers in Microbiology, 5(AUG).
Jordan, T. X., & Randall, G. (2016). Flavivirus modulation of cellular metabolism. Current Opinion in Virology, 19, 7-10.
Jordan, T. X., & Randall, G. (2017). Dengue virus activates the AMP kinase-mTOR axis to stimulate a proviral lipophagy. Journal of Virology, 91(11).
Kato, F., & Hishiki, T. (2016). Dengue Virus Reporter Replicon is a Valuable Tool for Antiviral Drug Discovery and Analysis of Virus Replication Mechanisms. Viruses, 8(5).
Katzelnick, L. C., Coloma, J., & Harris, E. (2017). Dengue: knowledge gaps, unmet needs, and research priorities. The Lancet Infectious Diseases, 17(3), e88-e100.
Kawaguchi, M., Aoki, S., Hirao, T., Morita, M., & Ito, K. (2016). Autophagy is an important metabolic pathway to determine leukemia cell survival following suppression of the glycolytic pathway. Biochemical and Biophysical Research Communications, 474(1), 188-192.
Klionsky, D. J., Abdalla, F. C., Abeliovich, H., Abraham, R. T., Acevedo-Arozena, A., Adeli, K. et al. (2012). Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 8(4), 445-544.
Kondo, Y., Kanzawa, T., Sawaya, R., & Kondo, S. (2005). The role of autophagy in cancer development and response to therapy. Nature Reviews Cancer, 5(9), 726-734.
Lan, S. H., Wu, S. Y., Zuchini, R., Lin, X. Z., Su, I. J., Tsai, T. F., Lin, Y. J., Wu, C. T., Liu, H. S. (2014). Autophagy-preferential degradation of MIR224 participates in hepatocellular carcinoma tumorigenesis. Autophagy, 10(9), 1687-1689.
Lee, J. A. (2012). Neuronal autophagy: a housekeeper or a fighter in neuronal cell survival? Experimental Neurobiology, 21(1), 1-8.
Lee, Y. R., Hu, H. Y., Kuo, S. H., Lei, H. Y., Lin, Y. S., Yeh, T. M., Liu, C. C,. Liu, H. S. (2013). Dengue virus infection induces autophagy: An in vivo study. Journal of Biomedical Science, 20(1).
Lee, Y. R., Lei, H. Y., Liu, M. T., Wang, J. R., Chen, S. H., Jiang-Shieh, Y. F., Liu, C. C., Liu, H. S. (2008). Autophagic machinery activated by dengue virus enhances virus replication. Virology, 374(2), 240-248.
Lee, Y. R., Su, C. Y., Chow, N. H., Lai, W. W., Lei, H. Y., Chang, C. L., Chang, T. Y., Chen, S. H., Lin, Y. S., Yeh, T. M., Liu, H. S. (2007). Dengue viruses can infect human primary lung epithelia as well as lung carcinoma cells, and can also induce the secretion of IL-6 and RANTES. Virus Research, 126(1-2), 216-225.
Lee, Y. R., Wang, P. S., Wang, J. R., & Liu, H. S. (2014). Enterovirus 71-induced autophagy increases viral replication and pathogenesis in a suckling mouse model. Journal of Biomedical Science, 21(1).
Lei, H. Y., Yeh, T. M., Liu, H. S., Lin, Y. S., Chen, S. H., & Liu, C. C. (2001). Immunopathogenesis of dengue virus infection. Journal of Biomedical Science, 8(5), 377-388.
Lennemann, N. J., & Coyne, C. B. (2015). Catch Me If You Can: The Link between Autophagy and Viruses. PLoS Pathogens, 11(3), 1-6.
Lin, Y. L., Liu, C. C., Lei, H. Y., Yeh, T. M., Lin, Y. S., Chen, R. M. Y., & Liu, H. S. (2000). Infection of five human liver cell lines by dengue-2 virus. Journal of Medical Virology, 60(4), 425-431.
Mateo, R., Nagamine, C. M., Spagnolo, J., Mendez, E., Rahe, M., Gale, M., Jr., Yuan, J., Kirkegaard, K. (2013). Inhibition of cellular autophagy deranges dengue virion maturation. Journal of Virology, 87(3), 1312-1321.
McArdle, J., Moorman, N. J., & Munger, J. (2012). HCMV targets the metabolic stress response through activation of AMPK whose activity is important for viral replication. PLoS Pathogens, 8(1).
McLean, J. E., Wudzinska, A., Datan, E., Quaglino, D., & Zakeri, Z. (2011). Flavivirus NS4A-induced autophagy protects cells against death and enhances virus replication. Journal of Biological Chemistry, 286(25), 22147-22159.
Metz, P., Chiramel, A., Chatel-Chaix, L., Alvisi, G., Bankhead, P., Mora-Rodríguez, R., Long, G., Hamacher-Brady, A., Brady, N. R., Bartenschlager, R. (2015). Dengue virus inhibition of autophagic flux and dependency of viral replication on proteasomal degradation of the autophagy receptor p62. Journal of Virology, 89(15), 8026-8041.
Munger, J., Bennett, B. D., Parikh, A., Feng, X. J., McArdle, J., Rabitz, H. A., Shenk, T., Rabinowitz, J. D. (2008). Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nature Biotechnology, 26(10), 1179-1186.
O'Neill, L. A., Kishton, R. J., & Rathmell, J. (2016). A guide to immunometabolism for immunologists. Nature Reviews: Immunology, 16(9), 553-565.
Palmer, C. S., Anzinger, J. J., Zhou, J., Gouillou, M., Landay, A., Jaworowski, A., McCune, J. M., Crowe, S. M. (2014). Glucose transporter 1-expressing proinflammatory monocytes are elevated in combination antiretroviral therapy-treated and untreated HIV+ subjects. Journal of Immunology, 193(11), 5595-5603.
Peña, J., & Harris, E. (2012). Early dengue virus protein synthesis induces extensive rearrangement of the endoplasmic reticulum independent of the UPR and SREBP-2 pathway. PloS One, 7(6).
Qin, W., Li, C., Zheng, W., Guo, Q., Zhang, Y., Kang, M., Zhang, B., Yang, B., Li, B., Yang, H., Wu, Y. (2015). Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget, 6(37), 39839-39854.
Rabinowitz, J. D., & White, E. (2010). Autophagy and metabolism. Science, 330(6009), 1344-1348.
Ramière, C., Rodriguez, J., Enache, L. S., Lotteau, V., André, P., & Diaz, O. (2014). Activity of hexokinase is increased by its interaction with hepatitis C virus protein NS5A. Journal of Virology, 88(6), 3246-3254.
Roberts, D. J., & Miyamoto, S. (2015). Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death and Differentiation, 22(2), 248-257.
Roberts, D. J., Tan-Sah, V. P., Ding, E. Y., Smith, J. M., & Miyamoto, S. (2014). Hexokinase-II Positively Regulates Glucose Starvation-Induced Autophagy through TORC1 Inhibition. Molecular Cell, 53(4), 521-533.
Sanchez, E. L., & Lagunoff, M. (2015). Viral activation of cellular metabolism. Virology, 479-480, 609-618.
Sanchez, E. L., Pulliam, T. H., Dimaio, T. A., Thalhofer, A. B., Delgado, T., & Lagunoff, M. (2017). Glycolysis, Glutaminolysis, and Fatty Acid Synthesis Are Required for Distinct Stages of Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication. Journal of Virology, 91(10).
Screaton, G., Mongkolsapaya, J., Yacoub, S., & Roberts, C. (2015). New insights into the immunopathology and control of dengue virus infection. Nature Reviews Immunology, 15(12), 745-759.
Tan, V. P., & Miyamoto, S. (2016). Nutrient-sensing mTORC1: Integration of metabolic and autophagic signals. Journal of Molecular and Cellular Cardiology, 95, 31-41.
Tang, W. C., Lin, R. J., Liao, C. L., & Lin, Y. L. (2014). Rab18 facilitates dengue virus infection by targeting fatty acid synthase to sites of viral replication. Journal of Virology, 88(12), 6793-6804.
Valadão, A. L. C., Aguiar, R. S., & de Arruda, L. B. (2016). Interplay between inflammation and cellular stress triggered by Flaviviridae viruses. Frontiers in Microbiology, 7(AUG).
Wan, S. W., Lin, C. F., Yeh, T. M., Liu, C. C., Liu, H. S., Wang, S., Ling, P., Anderson, R., Lei, H.Y., Lin, Y. S. (2013). Autoimmunity in dengue pathogenesis. Journal of the Formosan Medical Association, 112(1), 3-11.
Wei, J., Long, L., Yang, K., Guy, C., Shrestha, S., Chen, Z., Wu, C., Vogel, P., Neale, G., Green, D. R., Chi, H. (2016). Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nature Immunology, 17(3), 277-285.
Wu, Y., Wang, X., Guo, H., Zhang, B., Zhang, X. B., Shi, Z. J., & Yu, L. (2013). Synthesis and screening of 3-MA derivatives for autophagy inhibitors. Autophagy, 9(4), 595-603.
Wu, Y. W., Mettling, C., Wu, S. R., Yu, C. Y., Perng, G. C., Lin, Y. S., & Lin, Y. L. (2016). Autophagy-associated dengue vesicles promote viral transmission avoiding antibody neutralization. Scientific Reports, 6, 32243.
Yamamoto, N., Ueda-Wakagi, M., Sato, T., Kawasaki, K., Sawada, K., Kawabata, K., Akagawa, M., Ashida, H. (2015). Measurement of Glucose Uptake in Cultured Cells. Current Protocols in Pharmacology, 71, 12 14 11-26.
Zhang, J., Jia, L., Lin, W., Yip, Y. L., Lo, K. W., Lau, V. M., Zhu, D., Tsang, C. M., Zhou, Y., Deng, W., Lung, H. L., Lung, M. L., Cheung, L. M., Tsao, S. W. (2017). Epstein-Barr virus-encoded latent membrane protein 1 upregulates glucose transporter 1 transcription via the mTORC1/NF-κB signaling pathways. Journal of Virology, 91(6).
Zhou, J. R., Yu, L., Mai, Z., & Blackburn, G. L. (2004). Combined inhibition of estrogen-dependent human breast carcinoma by soy and tea bioactive components in mice. International Journal of Cancer, 108(1), 8-14.
校內:2022-08-25公開