簡易檢索 / 詳目顯示

研究生: 江彥廷
Chiang, Yen-Ting
論文名稱: 磊晶成長矽基異質結構光電元件的電特性與應力影響之研究
Characterization and Strain Effect of the Epitaxial Growth Silicon-Based Heterostructures for Optoelectronic Detecting Applications
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 100
中文關鍵詞: 多孔結構應變矽磊晶成長異質結構紫外光紅外光
外文關鍵詞: Porous structure, Strain Si, Epitaxial growth, Heterostructures, Ultraviolet (UV), Infrared (IR)
相關次數: 點閱:136下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中首先提出可應用於高速紅外光偵測之應變矽/矽鍺碳/矽異質結構p-i-n光二極體。吾人利用具有較高載子遷移率的應變矽 (strain Si) 層來提升元件響應特性,並使用快速昇溫化學氣相沈積系統 (RTCVD) 於矽基板上異質磊晶成長高品質矽鍺碳 (Si1-x-yGexCy) 薄膜作為主要吸收層。藉由通入價格低廉的丙烷 (C3H8) 氣體作為晶格常數較小的碳原子源,以成長較高臨界厚度 (critical thickness) 之矽鍺碳薄膜來增加紅外光吸收,進而提高元件的靈敏度。此外,在成長矽鍺碳薄膜前,吾人預先將矽基板背面經由蝕刻處理成凹槽狀,減少串聯電阻與增加元件散熱速度。除此之外,吾人更進一步詳細研究覆蓋應變矽層所生應力對元件特性之影響。其結果顯示,相較於傳統無應變矽層或未經凹槽基板蝕刻處理之一般紅外光偵測元件,此元件具有更佳的性能。
    接著吾人利用電化學陽極蝕刻法 (electrochemical anodization, ECA) 分別於矽基板與碳化矽 (β-SiC) 薄膜表面蝕刻出多孔結構,形成多孔矽 (porous silicon, PS) 與多孔碳化矽 (porous silicon carbide, PSC) 作為氮碳化矽/矽與氮化鎵/矽異質接面之緩衝層,並成功製作出可應用於紫外光偵測之氮碳化矽/多孔矽異質接面p-n結構光二極體與氮化鎵/多孔碳化矽/矽異質接面MSM結構光感測元件。實驗發現,相較於直接成長於矽基板上無多孔緩衝層結構的一般元件,本論文所發展之新結構元件具有較佳的光電特性,如光暗電流比值 (PDCR)、響應度及量子效率等。經由拉曼分析儀 (Ramam) 與光激光譜儀 (photoluminance spectra) 分析其界面間的應力,證實此海綿狀 (sponge-like) 的多孔結構緩衝層,可有效釋放界面間的應力,減少界面間晶格不匹配所造成的缺陷,因而有助於在其表面上之異質磊晶薄膜的成核與成長。另一方面多孔結構的高電阻特性,也能有效抑制紫外光偵測元件在高溫環境時所增加的漏電流,及增加吸光面積,進而提升元件效能。
    最後,吾人先於常壓燒結且具有多晶結構的碳化矽 (pressureless-sintering ceramic SiC, ce-SiC) 陶瓷基板上成長碳化矽 (α-SiC) 緩衝層,再於其上製作氮化鎵/碳化矽/陶瓷碳化矽異質接面之MSM結構紫外光感測元件,並與矽基板上成長相同結構之元件進行比較。吾人發現在陶瓷碳化矽基板上所研製之元件與在矽基板研製的氮化鎵/多孔碳化矽/矽異質接面紫外光感測元件有相近光暗電流比值,且具有低成本與簡單製程等優點,使其更有應用之潛力。

    In this dissertation, the p-strain Si/i-Si1-x-yGexCy/n-Si p-i-n photodiode was developed firstly for fast infrared (IR) detecting. We employ the p-strain Si to speed up the detector response, and a high quality i-Si1-x-yGexCy film as main absorber. The i-Si1-x-yGexCy was grown expitaxially on n-Si substrate in a rapid thermal chemical vapor deposition (RTCVD) system with C3H8 as carbon (C) source. With the addition of C-atoms, the i-Si1-x-yGexCy could be grown with a thicker critical thickness to absorb more quantity of IR light, thus in turn improving sensitivity. Besides, the n-Si substrate was etched preferentially for reduction of series resistance and accelerating the heat dissipation. As a result, the developed device achieved a better performance than that of the conventional one without the strain Si or the preferentially etched substrate. Furthermore, the effects of the strain from the capped strain Si layer on the device』s performances were studied in details.
    Next, we used the porous silicon (PS) and the porous SiC (PSC), respectively on the surface of Si substrates as buffer layers to grow the SiCN/Si and GaN/Si heterojunctions for development of n-SiCN/p-PS/p-Si photodiode and MSM GaN/PSC/n-Si photodetector for ultraviolet (UV) detecting. These porous buffer layers provide sponge-like structure to limit the development of strain and cracks after the post growth cooling, thus favoring the nucleation to result a better epitaxial film, and has a high resistivity to suppress the dark current. The strain is analyzed by both Ramam and photoluminance (PL) spectra. Experimental results indicate that the developed devices have better optoelectronic properties such as photo/dark current ratio (PDCR), responsivity and quantum efficiencies than that of the conventional one without the porous treatment.
    Finally, the developed GaN/PSC/n-Si photodetector was compared to the one of GaN on pressureless-sintering ceramic SiC (ce-SiC) substrate with poly α-SiC buffer layer. Both devices have almost the same PDCR, but the GaN/poly α-SiC/ce-SiC device possesses the simpler preparing process, and the lower cost substrate.

    目錄 (CONTENTS) 中文摘要 (1) 各章中文提要 (3) 誌謝 (17) 目錄 (I) Table Captions (III) Figure Captions (IV) Abstract (IX) Chapter 1 Introduction 1-1 Background 1 1-2 Preface of this Dissertation 2 Chapter 2 Effect of Ge Composition on Infrared Detecting Performance of Strain Si /Si1-x-yGexCy Heterojunction on Preferentially Etched Silicon Substrate 6 2-1 Introduction 6 2-2 Device fabrication and measurement 7 2-3 Results and discussion 9 2-4 Conclusion 13 Chapter 3 n-SiCN/p-Silicon Heterojunction with Porous Silicon Buffer Layer for Low Cost and High Temperature Ultraviolet (UV) Detecting Applications 26 3-1 Introduction 26 3-2 Porous silicon formation 28 3-3 Preparation process for the SiCN thin films on PS substrate 29 3-4 Results and discussion 30 3-5 Conclusion 32 Chapter 4 GaN on Silicon Substrate with Various SiC Buffer Layer for UV Detecting Applications 44 4-1 Introduction 44 4-2 Device fabrication and measurement 46 4-3 Characterization of the developed PSC thin films 47 4-4 Results and discussion 47 4-5 Conclusion 51 Chapter 5 GaN/SiC Heterojunctions on Ceramic SiC Substrate for Low Cost and High Temperature Ultraviolet (UV) Detecting Applications 65 5-1 Introduction 65 5-2 Device fabrication and measurement 66 5-3 Characterization of the developed SiC-MSM PDs 67 5-4 Characterization of the developed GaN-MSM PDs 69 5-5 Conclusion 71 Chapter 6 Conclusions and Prospects 84 6-1 Conclusions 84 6-2 Prospects 85 Reference 88 Appendix A VITA Appendix B Author』s Related Publications

    References
    [1] Y. T. Chiang, Y. K. Fang, C. M. Wang, and R. Teng, 「Investigation and Modeling of Nickel Silicide (NiSi) Piping in 90nm Node and Beyond CMOS Technology」, in International Electron Devices and Materials Symposia (IEDMS), pp.AP-406, Taichung, Taiwan, November 28-29, 2008
    [2] Y. T. Chiang, Y. K. Fang, Y. J. Huang, T. H. Chou, S. Y. Yeh, and C. S. Lin, 「Effect of the Pre-Gate Oxide Cleaning Temperature on the Reliability of GOI and Devices Performances in Deep Submicron CMOS Technology」, Microelectron. Reliab., vol. 48, pp. 1786-1790, 2008.
    [3] Y. T. Chiang, Y. K. Fang, K. C. Lin, T. H. Chou, and S. F. Chen, 「The Effect of H-Treatment on Au-Induced Lateral Crystallization of Phosphorus-Doped a-Si/H Films」, Electrochem. Solid State Lett., vol.10, pp. H221-223, 2007.
    [4] F. Link, H. Baumann, K. Bethge, H. Klewe-Nebenius, and M. Burns, 「C and N Profiles of SiCN layers Determined with Nuclear Reaction Analyses and AES」, Nucl. Instrum. Methods Phys. Res. Sect. B, Vol. 139, pp. 268-272, 1998.
    [5] J. D. Hwang, Y. K. Fang, Y. J. Song, and D. N. Yaung,「Epitaxial Growth and Electrical Characteristics of β-SiC on Si by Low-pressure Rapid Thermal Chemical Vapor Deposition」, Jpn. J. Appl. Phys., vol.34, pp. 1447-1450, 1995.
    [6] A. J. Steckel and J. P. Li, 「Epitaxial Growth of β-SiC on Si by RTCVD with C3H8 and CH4」, IEEE Trans. on Electron Devices, vol.39, no.1, pp.64-74, 1992.
    [7] J. A. Powell, L. G. Matus, and M. A. Kuczmarski, 「Growth and Characteristics of Cubic Single-crystal SiC Films on Si」, J. Electrochem. Soc., vol.134, pp.1558-1565, 1987.
    [8] S. Nishino, H. Suhara, H. Ono, and Matsunami, 「Epitaxial Growth and Electric Characteristics of Cubic SiC on Silicon」, J. Appl. Phys., vol.61, pp.4889-4893, 1987.
    [9] P. Liaw and R. F. Davis, 「Epitaxial Growth and Characterization of β-SiC Thin Films」, J. Electrochem. Soc., vol.132, pp.642-648, 1985.
    [10] J. Napierala, H. J. Bühlmann, and M. Ilegems, 「Selective GaN Epitaxy on Si(111) Substrates Using Porous Aluminum Oxide Buffer Layers」, J. Electrochem. Soc., vol.153, pp.G125-127, 2006.
    [11] G. Freeman, D. Ahlfren, D. R. Greenberg, R. Groves, F. Huang, G. Hugo, B. Jagannathan, S. J. Jeng, J. Johnson, K. Schonenberg, K. Stein, R. Volant, and S. Subbanna, 「A 0.18m 90GHz fT SiGe HBT BiCMOS, ASIC-Compatible, Copper Interconnect Technology for RF and Microwave Applications」, in IEDM Tech. Dig., pp.569-572, 1999.
    [12] S. A. St.Onge, D. L. Harame, J. S. Dunn, S. Subbanna, D. C. Ahlgren, G. Freeman, B. Jagannathan, S. J. Jeng, K. Schonenberg, K. Stein, R. Grove, D. Coolbaugh, N. Feilchenfeld, P. Geiss, M. Gordon, P.Gray, D. Hershberger, S. Kilpatrick, R. Johnson, A. Joseph, L. Lanzerotti, J. Malinowski, B. Orner, and M. Zierak, 「A 0.24 m SiGe BiCMOS Mixed Signal RF Production Technology Featuring at 47 GHz ft HBT and 0.18 m Leff CMOS,」 in IEEE BCTM Proc., pp.117-120, 1999.
    [13] J. C. Bean, 「Silicon-Based Semiconductor Heterostructure Colu-mn-IV Bandgap Engineering」, in Proc. IEEE, vol. 80, p.571-587, 1992.
    [14] H. Presting, H. Kibbel, M. Jaros, R.M. Turton, U. Menezigar, G, Abstreiter, H.G. Grimmeiss, 「Ultrathin Simgen Strained Layer Superlattices - A Step towards Si Optoelectronics」, Semicond. Sci. Technol., vol.1, pp.1127-1148, 1992.
    [15] W. T. Hsieh, Y. K. Fang, W. J. Lee, K. H. Wu, J. J. Ho, K. H. Chen and S. Y. Huang, 「An a-SiGe:H Phototransistor Integrated with a Pd Film on Glass Substrate for Hydrogen Monitoring」, IEEE Trans. on Electron Devices, vol.47, pp.939-943, 2000.
    [16] F. A. Ponce, B. S. Krusor, J. S. Major, Jr., W. E. Plano, and D. F. Welch, 「Microstructure of GaN Epitaxy on SiC Using AlN Buffer Layers」, Appl. Phys. Lett., vol.67, pp.410-412, 1993.
    [17] S. M. Sze, Modern Semiconductor Device Physics, John Wiley & Sons, Inc., New York, pp.537-542, 1998.
    [18] P. A. Ivanov, and V. E. Chelnokov, 「Recent Development in SiC Single Crystal Electronics」, Semicond. Sci. Technol. vol.7, pp.863-880, 1992.
    [19] D. Wang, Y. Hiroyama, M. Tamura, M. Ichikawa, and S. Yoshida, 「Growth of Hexagonal GaN on Si(111) Coated with a Thin Flat SiC Buffer Layer」, Appl. Phys. Lett., vol.77, pp.1846-1848, 2000.
    [20] S. P. Chang, S. J. Chang, C. Y. Lu, Y. Z. Chiou, R. W. Chuang and H. C. Lin, 「Low-Frequency Noise Characteristics of GaN-Based UV Photodiodes With AlN/GaN Buffer Layers Prepared on Si Substrates」, J. Cryst. Growth, vol.311, pp.3003-3006, 2009.
    [21] H. Hartono, C. B. Soh, S. J. Chua, and E. A. Fitzgeralda, 「High Quality GaN Grown from a Nanoporous GaN Template」, J. Electrochem. Soc., vol.154, pp.H1004-1007, 2007.
    [22] J. Wu, H. Yaguchi, H. Nagasawa, Y. Yamaguchi, K. Onabe, Y. Shiraki, and R. Ito, 「Investigation of Luminescence Properties of GaN Single Crystals Grown on 3C-SiC Substrates」, J. Cryst. Growth, vol.189-190, pp.420-424, 1998.
    [23] W. T. Hsieh, Y. K. Fang, S. F. Ting, Y. S. Tsair, W. J. Lee, and H. P. Wang, 「Improving High Temperature Characteristic of SiGeC/Si Hetrojunction Diode with Propane Carbon Source」, Solid-State Electron., vol. 46, pp.1949-1952, 2002.
    [24] K. H. Wu, Y. K. Fang, J. H. Zhou, and J. J. Ho, 「β-SiC Photodiodes Prepared on Silicon Substrates by Rapid Thermal Chemical Vapor Deposition」, Jpn. J. Appl. Phys., vol.36, pp.5151-5155, 1997.
    [25] X. L. Huang, M. S. Jeong, S. H. Ihm, O. H. Cha, E. K. and H. J. Lee, 「Defect Related Dark Current and Charge Injection in Si1-xGex/Si Multiple Quantum Wells」, Solid-State Electron., vol.43, pp.953-959, 1999.
    [26] X. Shao, S. L. Rommel, B. A. Orner, H.Feng, M. W. Dashiell, R. T. Troeger, and T. Laursen, 「1.3μm Photoresponsivity in Si-Based Ge1-xCx Photodiodes」, Appl. Phys. Lett., vol.72, pp.1860-1862, 1998.
    [27] F. Y. Huang, X. Zhu, M. O. Tanner, and K. L. Wang, 「Normal-Incidence Strained-Layer Superlattice Si0.5Ge0.5/Si Photodiodes Near 1.3μm」, Appl. Phys. Lett., vol.67, pp.566-568, 1995.
    [28] D. K. Nayak and S. K. Chun, 「Low-Field Hole Mobility of Strained Si on (100) Si1-xGex Substrate」, Appl. Phys. Lett., vol.64, pp.2514-6, 1994.
    [29] M. T. Currie, C. W. Leitz, T. A. Langdo, G. Taraschi, E. A. Fitzgerald, and D. A. Antoniadis, 「Carrier Mobilities and Process Stability of Strained Si n- and p-MOSFETs on SiGe Virtual Substrates」, J. Vac. Sci. Technol. B, vol.19, pp.2268-2279, 2001.
    [30] T. Manku and A. Nathan, 「Lattice Mobility of Holes in Strained and Unstrained Si1-xGex Alloys」, IEEE Electron Device Lett., vol.12, pp.704-706, 1991.
    [31] K. L. Wang, S. G. Thomas, and M. O. Tanner, 「SiGe Band Engineering for MOS, CMOS and Quantum Effect Devices」, J. Mater. Sci.-Mater Electron., vol. 6, pp. 311-324, 1995.
    [32] C. L. Chang, A. St. Amour, and J. C. Strum, 「Effect of Carbon on the Valence Band Offset of Si1-x-yGexCy /Si (001) Heterostructures」, in IEDM Tech. Dig., pp.257-260, 1996.
    [33] File No 75-0590 of the Powder Diffraction Database (PDF-2), Maintained and Distributed by the International Centre for Diffraction Data (ICDD). Newton Square, PA, 2002.
    [34] K. U. Joshi, D. Kabiraj, A. M. Narsale, D. K. Avasthi, T. N. Warang, and D. C. Kothari, 「Embedded SiGe Nanoparticles Formed by Atom Beam Co-Sputtering of Si, Ge, SiO2」, Surf. Coat. Technol., vol. 203, pp.2482-2485, 2009.
    [35] B. Li, S. J. Chua, and E. A. Fitzgerald, 「Theoretical Analysis of Si1-x-yGexCy Near-Infrared Photodetectors」, Opt. Eng., vol. 42, pp.1993-1999, 2003.
    [36] A. Torabi, W. E. Hoke, J. J. Mosca, J. J. Siddiqui, R. B. Hallock, and T. D. Kennedy, 「Influence of AlN Nucleation Layer on the Epitaxy of GaN/AlGaN High Electron Mobility Transistor Structure and Wafer Curvature」, J. Vac. Sci. Technol. B, vol. 23, pp.1194-1198, 2005.
    [37] A. Pakfar, 「Dopant Diffusion in SiGe: Modeling Stress and Ge Chemical Effects」, Mater. Sci. Eng. B, vol.89, pp.225-228, 2002.
    [38] J. Menéndez, P. Gopalan, G. S. Spencer, N. Cave, and J. W. Strane, 「Raman Spectroscopy Study of Microscopic Strain in Epitaxial Si1-x-yGexCy Alloys」, Appl. Phys. Lett., vol. 66, pp.1160-1162, 1995.
    [39] X. Wu, J. Yu, T. Ren, and L. Liu, 「Micro-Raman Spectroscopy Measurement of Stress in Silicon」, Microelectron. J., vol. 38, pp.87-90, 2007.
    [40] A. B. Horsfall, J. M. M. dos Santos, S. M. Soare, N. G. Wright, A G. Neill, S. J. Bull, A. J. Walton, A. M. Gundlach, and J. T. M. Stevenson, 「Direct Measurement of Residual Stress in Sub-Micron Interconnects」, Semicond. Sci. Technol., vol. 18, pp.992-996, 2003.
    [41] T. J. Wang, C. H. Ko, S. J. Chang, S. L. Wu, T. M. Kuan, and W. C. Lee, 「The Effects of Mechanical Uniaxial Stress on Junction Leakage in Nanoscale CMOSFETs」, IEEE Trans. Electron Devices, vol. 55, pp.572-577, 2008.
    [42] E. H. Toh, G. H. Wang, G. Q. Lo, Lap Chan, G. Samudra, and Y. C. Yeo, 「Performance Enhancement of n-Channel Impact-Ionization Metal-Oxide -Semiconductor Transistor by Strain Engineering」, Appl. Phys. Lett., vol. 90, pp. 023505-023507, 2007.
    [43] J. J. Ho, Y. K. Fang, K. H. Wu, W. T. Hsieh, S. C. Huang, G. S. Chen, M. S. Ju, and J. J. Lin, 「High-Speed Amorphous Silicon Germanium Infrared Sensors Prepared on Crystalline Silicon Substrates」, IEEE Trans. Electron Devices, vol. 45, pp.2085-2088, 1998.
    [44] F. Y. Huang and K. L. Wang, 「Normal-Incidence Epitaxial SiGeC Photodetector Near 1.3 um Wavelength Grown on Si substrate」, Appl. Phys. Lett., vol. 69, pp. 2330-2332, 1996.
    [45] P. C. Chang, C. L. Yu, S. J. Chang, Y. C. Lin, and S. L. Wu, 「Low-Noise and High-Detectivity GaN UV Photodiodes with a Low-Temperature AlN Cap Layer」, IEEE Sens. J., vol. 7, pp.1289-1292, 2007.
    [46] M. Shatalov, J. Zhang, A. S. Chitnis, V. Adivarahan, J. Yang, G. Simin, and M. A. Khan, 「Deep Ultraviolet Light-Emitting Diodes Using Quaternary AlInGaN Multiple Quantum Wells」, IEEE J. on Selected Topics in Quantum Electron., vol. 8, pp.302-309, 2002.
    [47] V. M. Aroutiounian and V. V. Buniatyan, 「Wide Gap Semiconductor Microwave Devices」, Journal of Physics. D, vol.40, pp.6355-6385, 2007.
    [48] C. K. Wang, S. J. Chang, Y. K. Su, C. S. Chang, Y. Z. Chiou, C. H. Kuo, T. K. Lin, and T. K. Ko, J. J. Tang, 「GaN MSM Photodetectors with TiW Transparent Electrodes」, Mater. Sci. Eng. B, vol. 112, pp.25-29, 2004.
    [49] J. T. Torvik, J. I. Pankove, and B. Van Zeghbroeck, 「GaN/SiC Heterojunction Bipolar Transistors,」 Solid State Electron., vol. 44, pp.1229-1233, 2000.
    [50] T. Toda, M. Hata, Y. Nomura, Y. Ueda, M. Sawada and M. Shono, 「Operation at 700°C of 6H-SiC UV Sensor Fabricated Using N+ Implantation」, Jpn. J. Appl. Phys., vol. 43, pp.L27-29, 2004.
    [51] J. W. Johnson, E. L. Piner, A. Vescan, R. Therrien, P. Rajagopal, J. C. Roberts, J. D. Brown, S. Singhal, and K. J. Linthicum, 「12 W/mm AlGaN-GaN HFETs on Silicon Substrate」, IEEE Electron Device lett., vol. 25, pp.459-461, 2004.
    [52] L. Voss, S. J. Pearton, F. Ren, P. Bove, H. Lahreche and J. Thuret, 「Electrical Performance of GaN Schottky Rectifiers on Si Substrates」, J. Electrochem. Soc., vol. 153, pp.G681-684, 2006.
    [53] L. C. Chen, C. K. Chen, S. L. Wei, D. M. Bhusari, K. H. Chen, Y. F. Chen, Y. C. Jong, and Y. S. Huang, 「Crystalline Silicon Carbon Nitride: A Wide Band Gap Semiconductor」, Appl. Phys. Lett., vol. 72, pp.2463-2465, 1998.
    [54] K. H. Chen, J. J. Wu, C. Y. Wen, L. C. Chen, C. W. Fan, P. F. Kuo, Y. F. Chen, and Y. S. Huang, 「Wide Band Gap Silicon Carbon Nitride Films Deposited by Electron Cyclotron Resonance Plasma Chemical Vapor Deposition」, Thin Solid Films, vol. 355-356, pp.205-209, 1999.
    [55] P. G. Neudeck, D. J. Larkin, J. E. Starr, J. A. Powell, C. S. Salupo, and L. G. Matus, 「Electrical Properties of Epitaxial 3C- and 6H-SiC p-n Junction Diodes Produced Side-by-side on 6H-SiC Substrates」, IEEE Trans. Electron Devices, vol. 41, pp.826-835, 1994.
    [56] P. R. C. Kent, G. L. E. Hart, and A. Zunger, 「Biaxial Strain-Modified Valence and Conduction Band Offsets of Zinc-Blende GaN, GaP, GaAs, InP, and InAs and Optical Bowing of Strained Epitaxial InGaN Alloys」, Appl. Phys. Lett., vol. 81, pp.4377-4379, 2002.
    [57] A. Matoussi, T. Boufaden, A. Missaoui, S. Guermazi, B. Bessal¨s, Y. Mlik , B. E. Jani, 「Porous Silicon as an Intermediate Buffer Layer for GaN Growth on (100) Si」, Microelectron. J., vol. 32, pp.995-998, 2001.
    [58] I. Berbezier and A. Halimaoui, 「A Microstructual Study of Porous Silicon」, J. Appl. Phys., vol. 74, pp. 5421-5425, 1993.
    [59] W. T. Hsieh, Y. K. Fang, K. H. Wu, W. J. Lee, J. J. Ho, and C. W. Ho, 「Using Porous Silicon as Semi-insulating Substrate for β-SiC High Temperature Optical-Sensing Devices」, IEEE Trans. Electron Devices, vol. 48, pp.801-803, 2001.
    [60] W. T. Hsieh, Y. K. Fang, W. J. Lee, C.W. Ho, K. H. Wu and J. J. Ho, 「To Suppress Dark Current of High Temperature β-SiC/Si Optoelectronic Devices with Porous Silicon Substrate」, Electron. Lett., vol. 36, no. 22, pp. 1869-1870, 2000.
    [61] Z. X. Cao, 「Plasma Enhanced Deposition of Silicon Carbonitride Thin Films and Property Characterization」, Diamond Relat. Mater., vol. 11, pp.16-21, 2002.
    [62] Database, Maintained and Distributed by the International Centre for Diffraction Data (ICDD), Newtown Square, PA, (2002).
    [63] V. Lehmann and U. Gosele, 「Porous Silicon Formation: A Quantum Wire Effect」, App. Phys. Lett., vol.58, pp.856-858, 1991.
    [64] T. H. Moon, M. C. Jeong, W. Lee, and J. M. Myoung, 「The Fabrication and Characterization of ZnO UV Detector」, Appl. Sur. Science, vol. 240, pp. 280-285, 2005.
    [65] W. R. Chang, Y. K. Fang, S. F. Ting, Y. S. Tsair, C. N. Chang, C. Y. Lin, and S. F. Chen, 「The Hetero-epitaxial SiCN/Si MSM Photodetector for High-Temperature Deep-UV Detecting Applications」, IEEE Electron Devices Lett., vol. 24, pp. 565-567, Sep. 2003.
    [66] Y. Nakada, I. Aksenov, and H. Okumura, 「GaN Heteroepitaxial Growth on Silicon Nitride Buffer Layers Formed on Si (111) Surfaces by Plasma-assisted Molecular Beam Epitaxy」, Appl. Phys. Lett., vol.73, pp.827-829, 1998.
    [67] B. Burkland, Z. Y. Xie, J. H. Edgar, M. Ervin, J. Chaudhuri, and S. Farsinivas, 「Effects of the Addition of Silane during Carbonization on the Epitaxy of 3C-SiC on Si」, J. Electrochem. Soc., vol.149, pp.G550-554, 2002.
    [68] K. H. Wu, Y. K. Fang, J. Y. Fang, and J. D. Hwang, 「The Growth and Characterization of Silicon/Silicon Carbide Heteroepitaxial Films on Silicon Substrates by Rapid Thermal Chemical Vapor Deposition」, Jpn. J. Appl. Phys., vol.35, pp.3836-3840, 1996.
    [69] A. Takazawa, T. Tamura, and M. Yamada, 「Porous β-SiC Fabrication by Electrochemical Anodization」, Jpn. J. Appl. Phys., vol.32, pp.3148-3149, 1993.
    [70] K. C. Kim, C. I. Park, J. I. Roh, K. S. Nahm,Y. B. Hahn, Y. S. Lee, and K. Y. Lim, 「Mechanistic Study and Characterization of 3C-SiC(100) Grown on Si(100)」, J. Electrochem. Soc., vol.148, pp.C383-389, 2001.
    [71] W. V. Muench and E. Pettenpaul, 「Preparation of Pure and Doped Silicon Carbide by Pyrolysis of Silane Compounds」, J. Electrochem. Soc., vol.125, pp.294-299, 1978.
    [72] Y. H. Mo, K. S. Nahm, S. H. Yang, K. C. Kim, W. H. Lee, E-K. Suh, and K. Y. Lim, 「Growth and Characterization of GaN Thin Films on β-SiC/Si Substrate Using Rapid Thermal Chemical Vapor Deposition」, J. Korean Phys. Soc., vol.34, pp.S364-369, 1999.
    [73] C. K. Inoki, T.S. Kuan, A. Sagar, C.D. Lee, R.M. Feenstra, D. D. Koleske, D. J. Diaz, P.W. Bohn, and I. Adesida, 「Growth of GaN on Porous SiC and GaN Substrates」, Phys. Status Solidi (a), vol.200, pp. 44-47, 2003
    [74] O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, 「Lateral Epitaxy of Low Defect Density GaN Layers via Organometallic Vapor Phase Epitaxy」 , Appl. Phys. Lett., vol.71, pp. 2638-2640, 1997.
    [75] C. K. Inoki, T. S. Kuan, C. D. Lee, A. Sagar, R. M. Feenstra, D. D. Koleske, D. J. Diaz, P. W. Bohn, and I. Adesida, 「Growth of GaN on Porous SiC and GaN Substrates」, J. Electron. Mater., vol. 32, pp. 855-860, 2003.
    [76] C. Kisielowski, J. Kr u¨ger, S. Ruvimov, T. Suski, J. W. Ager III, E. Jones, Z. L. Weber, M. Rubin, E. R. Weber, M. D. Bremser and R. F. Davis, 「Strain-Related Phenomena in GaN Thin Films」, Phys. Rev. B, vol.54, pp.17745-17753, 1996.
    [77] D. G. Zhao, S. J. Xu, M. H. Xie, S. Y. Tong, and H. Yang, 「Stress and Its Effect on Optical Properties of GaN Epilayers Grown on Si(111), 6H-SiC(0001), and c-Plane Sapphire」, Appl. Phys. Lett., vol.83, pp.677-679, 2003.
    [78] N. Vanhove, J. John, A. Lorenz, K. Cheng, G. Borghs, and J. E. M. Haverkort, 「ITON Schottky Contacts for GaN Based UV Photodetectors」, Appl. Surf. Sci., vol.253, pp.2930-2932, 2006.
    [79] Y. Z. Chiou, Y. K. Su, S. J. Chang, Y. C. Lin, C. S. Chang, and C. H. Chen, 「InGaN/GaN MQW p–n Junction Photodetectors」, Solid State Electron., vol.46, pp.2227-2229, 2002.
    [80] J. K. Sheu, C. J. Kao, M. L. Lee, W. C. Lai, L. S. Yeh, G. C. Chi, S. J. Chang, Y. K. Su, and J. M. Su, 「Nitride-based Ultraviolet Metal-Semiconductor-Metal Photodetectors with a Low-Temperature GaN Layer」, J. Electron. Mater., vol.32, pp.400-402, 2002.
    [81] R. W. Chuang, S. P. Chang, S. J. Chang, Y. Z. Chiou, C. Y. Lu, T. K. Lin, Y. C. Lin, C. F. Kuo, and H. M. Chang, 「Gallium Nitride Metal- Semiconductor-Metal Photodetectors Prepared on Silicon Substrates」, J. Appl. Phys., vol.102, pp.073110-073114, 2007.
    [82] E. Monroy, F. Omnès, and F. Calle, 「Wide-Bandgap Semiconductor Ultraviolet Photodetectors」, Semicond. Sci. Technol., vol.18, pp.R33-51, 2003.
    [83] F. Yun, S. Doan, Y. T. Moon, Y. Fu, J. Xu, D. Johnstone, and H. Morkoç, 「Characterization of MOCVD Grown GaN on Porous SiC Templates」, phys. Status Solidi (c),vol. 2, pp.2087-2090, 2005
    [84] J. Li, Y. Ye, L. Shen, J. Chen, and H. Zhou, 「Densification and Grain Growth during Pressureless Sintering of TiO2 Nanoceramics」, Mater. Sci. Eng. A, vol.390, pp.265-270, 2005.
    [85] Y. T. Chiang, Y. K. Fang, T. H. Chou, F. R. Juang, K. C. Hsu, T. C. Wei, C. I. Lin, and H. Kuan, 「GaN on Silicon Substrate with Various SiC Buffer Layer for UV Detecting Applications」, IEEE Sens. J., Vol. 10, pp. 1291-1296, 2010.
    [86] The Powder Diffraction Database (PDF-2) of JCPDS-ICDD diffraction data available from the International Center for Diffraction Data, Newton Square, PA, 2002.
    [87] A. L. Ortiz, F. L. Cumbrera, F. Sa´nchez-Bajo, F. Guiberteau, H. Xu, and N. P. Padture, 「Quantitative Phase-Composition Analysis of Liquid-Phase-Sintered Silicon Carbide Using the Rietveld Method」, J. Am. Ceram. Soc., vol.83, pp.2282–86, 2000.
    [88] X. Yang, G. Shi, H. Huang and Y. Wu, 「Ball-Milling-Induced Polytypic Transformation of 6H-SiC→3C-SiC」, Science in China Series E, vol.42, pp.54-59, 1992.
    [89] A. Vijayakumar, R. M. Todi, and K. B. Sundaram, 「Amorphous-SiCBN-Based Metal-Semiconductor-Metal Photodetector for High-Temperature Applications」, IEEE Electron Device Lett., vol. 28, pp.713-715, 2007.
    [90] Y. T. Chiang, Y. K. Fang, T. H. Chou, C. I. Lin, F. R. Juang, T. W. Kuo, K. H. Wu, M. Ho, and J. S. Shie, 「N-SiCN/P-Silicon Heterojunction with Porous Silicon Buffer Layer for Low Cost and High Temperature Ultraviolet (UV) Detecting Applications」, IEEE Sens. J., vol. 9, pp.849-853, 2009.
    [91] K. L. Averetta and J. E. Van Nostrand, J. D. Albrecht, Y. S. Chen, and C. C. Yang, 「Epitaxial Overgrowth of GaN Nanocolumns」, J. Vac. Sci. Technol. B, vol. 25, pp. 964-968, 2007.
    [92] I. Ferguson, C. A. Tran, R. F. Karlicek Jr., Z. C. Feng, R. Stall, S. Liang, Y. Lu, and C. Joseph, 「GaN and AlGaN Metal-Semiconductor-Metal Photodetectors」, Mater. Sci. Eng. B, vol. 50, pp.311-314, 1997.
    [93] J. D. Hwang and C. J. Lin, 「High 366/254-nm Rejection Contrast GaN MIS Photodetectors Using Nano Spin-Oxide」, IEEE Electron Device Lett., vol. 30, pp.27-29, 2009
    [94] F. Y. Huang, K. Sskamoto, K. L. Wang, P. Trinh, and B. Jalali, 「Epitaxial SiGeC Waveguide Photodetector Grown on Si Substrate with Response in the 1.3-1.55 μm Wavelength Range」, IEEE Photonics Technol. Lett., vol.9, pp.229-231, 1997.
    [95] G. Sun, Y. Li, Y. Lu, B. Khan, and G. S. Tompa, 「Investigation of Efficiency Improvement on Silicon Solar Cells due to Porous Layers」, in Mater Res. Soc. Symp. Proc., vol.358, p.593-598, 1995.
    [96] S. Bastide, S. Strehlke, M. Cuniot, A. Boutry-Forveille, Q. N. Le, D. Sarti, and C. Levy-Clement, 「Porous Silicon Emitter for Solar Cells,」 in Conf. Rec. 13th EC PVSEC, pp. 1280-1283, 1995.
    [97] A. Krotkus, K. Grigoras, V. Pacebutas, I. Barsony, E. Vazsonyi, M. Fried, J. Szlufcik, J. Nijs, and C. Levy-Clement, 「Efficiency Improvement by Porous Silicon Coating of Multicrystalline Solar Cells」, Sol. Energy Mater. Sol. Cells, vol.45, pp.267-273, 1997.
    [98] X. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson, 「Electrospun Nanofibrous Membranes for Highly Sensitive Optical Sensors」, Nano Lett., vol.2, pp 1273–1275, 2002.
    [99] M. F. Schubert and F. Rana, 「High Performance SiGeC/Si Near-IR Photonic Devices」, in Conference on Lasers and Electro-Optics (CLEO), pp. JThC-100, Long Beach, California, May 21, 2006.
    [100] K. Nagata, O. Nakajima, Y. Yamauchi, H. Ito, T. Nittono, and T. Ishibashi, 「High-Speed Performance of Al1-xGaxAs/GaAs Heterojunction Bipolar Transistors with Nonalloyed Emitter Contacts」, in 45th Annual Device Research Conf., pp. IVA-2, Sana Barbra, CA, June 22-24, 1987.
    [101] L. D. Lanzerotti, A. St. Amour, C. W. Liu, J. C. Sturm. J. K. Watanabe, and N. D. Theodore, 「Si/Si1-x-yGexCy/Si Heteroojunction Bipolar Transistors」, IEEE Electron Device Lett., vol.17, pp.334-337, 1996.
    [102] C. Y. Chang, J. W. Hong, and Y. K. Fang, 「Amorphous Photo-transistors and Avalanche Photodiodes」, IEE Proceedings-J, vol.138, pp.226-233, 1991.
    [103] L. B. Rowland, R. S. Kern, S. Tanaka, and R. F. Davis, 「Aluminum Nitride/Silicon Carbide Multilayer Heterostructure Produced by Plasma-Assisted, Gas-Source Molecular Beam Epitaxy」, Appl. Phys. Lett., vol.62, pp.3333-3335, 1993.
    [104] S. Nakamura. T. Mukai, and M. Senoh, 「High-Brightness InGaN/AlGaN Double-Heterostructure Blue-Green Light Emitting Diodes」, J. Appl. Phys., vol.76, pp.8189-8191, 1994.
    [105] R. Gaska, Q. Chen, J. Yang, A. Osinsky, M. A. Khan, and M. S. Shur, 「High-Temperature Performance of AlGaN/GaN HFET』s on SiC Substrates」, IEEE Electron Device Lett., vol.18, pp.492-494, 1997.

    無法下載圖示 校內:2016-01-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE