| 研究生: |
魯曜銓 Lu, Yaw-Chyung |
|---|---|
| 論文名稱: |
利用精密水準資料解析現今臺灣西南部泥岩區的垂直地表變形特性 Analysis of present-day vertical deformation at mudstone region in SW Taiwan using precise leveling measurements |
| 指導教授: |
景國恩
Ching, Kuo-En |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 201 |
| 中文關鍵詞: | 精密水準測量 、GNSS 、泥貫入體 、台灣西南部 |
| 外文關鍵詞: | precisice leveling, GNSS, mud diapir, southwestern Taiwan |
| 相關次數: | 點閱:125 下載:62 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去地表變形研究工作顯示,臺灣西南部之地表應變速率遠大於臺灣本島之平均值,然而此高應變速率可能是由於泥貫入體之持續發育所造成的。換言之,臺灣西南部地區之應變速率雖然很高,但是受到泥貫入體活動的影響並不容易累積能量並引發地震。目前分析地表變動方式,包括水準站、連續站、移動站及DInSAR資料,其中移動站由於僅為年施測且每測回測站分布較疏,因此資料的時間及空間連續性較低。InSAR資料所得之地表變化為相對衛星視角方向(LOS)之成果,對於地表變形研究的效果有限,主因是失相關(decorrelation)現象及信噪比(Signal-to-noise ratio, SNR)在高植被覆蓋的區域低,導致解算地表位移的困難度。因此,本研究使用中央地質調查所自2002年至2020年設置之岡山至安坡及路竹至茂林兩條東西向之水準測線資料並進行資料濾除,接著篩選距水準測線較近且品質穩定之GNSS連續站然後挑選出最佳的約制對組合,並藉由GNSS連續站之分析成果修正2010年甲仙、2016年美濃地震震後效應對水準速度擬合的影響,獲得臺灣西南部於甲仙地震前、甲仙至美濃地震間與美濃地震後相對於大陸邊緣的澎湖白沙S01R站之三時期垂直速度場。綜觀水準測線之垂直速度場,其變形形態在小崗山斷層至旗山斷層之泥岩區及中洲背斜附近皆為抬升,且北段又較南段多約 10 mm/yr,北段之抬升速度以第一時期為最高約為 24 mm/yr,南段則以第二時期最高約為8 mm/yr。歷年垂直變形剖面分析顯示,泥貫入體向上抬升的現象可能影響鄰近之斷層存在潛移之特性。此外,地表垂直變形與地表高程為不完全相關,中洲及古亭坑背斜左側與大崗山背斜及車瓜林斷層右側分別存在呈鐘型分布之抬升峰值,推測為活動泥貫入體之軸心位置,且該結果可能為深層存在沿滑脫面發育之東傾逆衝斷層,使原向上拱之泥貫入體軸心向左偏移。透過移動平均成果未能完全擬合活動斷層與泥貫入體所貢獻的垂直變形,推測本研究區域之西南部泥岩區的垂直地表變形主要受到泥貫入體影響。
Previous surface deformation studies have shown that the surface strain rate in southwestern Taiwan is much higher than the average in Taiwan. However, this high strain rate may be caused by the continuous development of mud diapir. In other words, though the strain rate in the southwestern part of Taiwan is high, it is not easy to accumulate energy and cause earthquakes under the effect of the mud intrusion. At present, the surface changes are analyzed, including leveling stations, CGPS stations, RGPS stations and DInSAR data. RGPS stations are only measured annually and the distribution of each survey is sparse, so the temporal and spatial continuity of the data is low. The surface changes obtained from the InSar data are the results of the relative satellite view direction (LOS), and the effect on the study of surface deformation is limited. The main reasons are the decorrelation phenomenon and the low signal-to-noise ratio (SNR) in the areas covered by high vegetation, which lead to the difficulty of solving the surface displacement. Therefore, this study uses the data of two leveling lines which crosses the northern side of Takangshan hill and the southern region of Hsiaokangshan hill. The stations are set up by the Central Geological Survey from 2002 to 2020 and filters the data. Then, selected CGPS that are close to the leveling lines and has stable quality as the constrain station. Through the analysis results of continuous GPS station to select the best constraint combination to correct the influence of the postseismic effect on the vertical velocity fitting with one earthquake and two events. Thus, we can obtained the vertical velocity field relative to the continental margin before the earthquake, between the Jiaxiang and Minong earthquakes, and after the Minong earthquake. From the vertical velocity field, its deformation pattern is uplift in the mudstone area from the Shaogangshan fault to the Chishan fault and near the Zhongzhou anticline, and the northern section is about 10 mm/yr more than the southern section. The uplift rate of the northern section was the highest in the first period, about 24 mm/yr, and the highest in the southern section was about 8 mm/yr in the second period. The analysis of vertical deformation profile show that the uplift of mud diapir may affect the nearest fault to have the characteristic of creeping. In addition, the vertical deformation of the surface is not completely correlated with the surface elevation. There are bell-shaped uplift peaks found on the left side of the Zhongzhou and Gutingkang anticlines;right side of the Dagangshan anticline and Chegualin fault , which are presumed to be the axes of active mud diapir. The result may be that there is an east-dipping thrust fault developed along the detachment surface in the deep layer, which shifts the axis of the mud diapir. The moving average results cannot fully fit the vertical deformation contributed by active faults and mud diapir. It is inferred that the vertical deformation of the mudstone area is mainly dominated by mud diapirs in SW Taiwan.
黃偉倫(1995),台灣西南海域泥貫入體之分布與陸上諸背斜之關係及其對沈積環境之影響,國立台灣大學海洋研究所碩士論文,共68頁。
石瑞銓、王維豪、李元希(2008),地震地質與地變動潛勢分析-斷層帶地下構造研究(2/4)。經濟部中央地質調查所研究報告。
洪怡貞(2017),利用2002-2015年大地測量資料探討台灣西南部現今構造之運動特性,成功大學測量及空間資訊學系學位論文,共94頁。
張李群(2014),以大地測量資料進行龍船斷層與旗山斷層行為分析之研究,成功大學測量及空間資訊學系學位論文,共110頁。
陳勇昇(2015),藉由大地測量資料探討龍船斷層與旗山斷層之間震變形特性,成功大學測量及空間資訊學系學位論文,共79頁。
楊名、景國恩(2016),國道3號田寮3號高架橋及中寮隧道長期改善設計、監測技術服務委外大地變位監測分析與評估工作(105),台灣世曦工程顧問公司委託計畫報告,共189頁。
陳松春(2011),台灣西南海域高屏上部斜坡之逸氣構造和天然氣水合物賦存關係之研究。經濟部中央地質調查所 100 年度自行研究計畫報告,共 112頁。
陳松春(2013),臺灣西南海域上部高屏斜坡泥貫入體及泥火山之分布及相關海床特徵。國立中央大學地球物理研究所博士論文,共116頁。
楊燦堯(2003),台灣的泥火山:臺大校友雙月刊第29期雙月刊。
黃偉倫(1995),台灣西南海域泥貫入體之分佈與陸上諸背斜之關係及其對沈積環境之影響。國立台灣大學海洋研究所碩士論文,共68頁。
黃旭燦(2003),台灣中南部褶皺逆衝斷層帶地質構造特徵分析。國立中央大學理學院地球物理研究所博士論文,共130頁。
莊惠如(2006),臺灣西南海域泥貫入體分佈與構造活動之關係。國立台灣大學海洋研究所碩士論文,共113頁。
翁群評(2001),小崗山斷層及其附近構造。國立中央大學地球物理研究所碩士論文,共84頁。
王士偉(2006),臺灣西南部珊瑚礁在矽質碎屑環境中最初發育機制之探討。台灣大學海洋研究所博士論文,共190頁。
陳太山、石文卿(2013),臺灣西南部的泥火山分佈與油氣探勘潛能。鑛冶,第57 卷3 期,第65-74頁。
石再添、鄧國雄、張瑞津、石慶得、楊貴三(1986),臺灣活斷層的地形學研究。國立臺灣師範大學地理研究所研究報告,第12期,共44頁。
沈淑敏(2006),應用歷年航空照片判釋林口臺地的崩壞特性。國立臺灣師範大學地理學系研究所碩士論文,共72頁。
張國楨(2012),近斷層高精度地形資料之判釋與分析(2/4)成果報告書。經濟部中央地質調查所101年度研究報告,共219頁。
饒瑞鈞、胡植慶、李元希(2008),地震地質與地變動潛勢分析-地變動監測分析(1/4)經濟部中央地質調查所報告第96-11號,共152頁。
饒瑞鈞(2014),GPS 觀測之雜訊分析研究Ⅱ。中央氣象局地震測報中心。
余輝龍、施輝煌、黃春盛、何智剛、曾寶樹(1990),台南縣龍船及高雄縣坑內、小滾水構造重點地質核查報告。中油內部報告。
林啟文、陳文山、劉彥求、陳柏村(2009),臺灣東部與南部的活動斷層,二萬五千分之一活動斷層條帶圖說明書。經濟部中央地質調查所特刊,第13 號,共122頁。
林啟文、游鎮源、洪國騰、周稟珊(2012),台灣西南部台南-高雄泥岩區構造。經濟部中央地質調查所彙刊,第25號,第143-174頁。
林啟文(2013),五萬分之一臺灣地質圖幅及說明書-旗山,圖幅第五十六號。經濟部中央地質調查所。
徐慶雲(1975),台南縣坑內、龍船及高雄縣小滾水構造地質核查報告。中油內部報告。
吳沂全、陳永隆、吳建一、宣大衛、吳榮章、陳煥彩(1993),龍船地區地層壓力梯度之估算。探採研究彙報,第16期,第396-411頁。
劉彥求和林啟文(2019),臺灣南部車瓜林斷層的構造特性研究。經濟部中央地質調查所特刊,第三十四號,53-82頁。
謝尊堯(2020),利用2016-2019年之大地測量資料探討車瓜林斷層及其西延構造線形之間震變形特性。成功大學測量及空間資訊學系學位論文,共97頁。
陳文山、黃能偉、游能悌、周飛宏、顏一勤、宋時驊、楊志成、楊小青(2005),地震地質調查及活動斷層資料庫建置計畫-槽溝開挖與古地震研究計畫(4/5)-旗山與龍船斷層條帶地質圖說明書。經濟部中央地質調查所報告,第94-08-2號,共48頁。
鄭宏祺(2000),台灣西南部台南至屏東地區地質構造之研究,國立中央大學應用地質研究所碩士論文,共92頁。
耿文溥(1981),台南以東丘陵區之地質。經濟部中央地質調查所彙刊,第1 號,共31頁。
陳柏村(2005),旗山斷層南段變形特性研究。國立成功大學地球科學系碩士論文,共125頁。
宋國城(2003),有關旗山斷層的一些新觀察。第十屆臺灣地區地球物理研討會論文集,第430-431頁。
張鴻成(2005),旗山斷層左移或右移。中國地質學會九十四年年會暨學術研討會,第274頁。
楊名、景國恩(2020),2018~2021年高鐵里程TK324~336區域地質構造與大地位移數據監測及分析顧問第四次位移分析報告。臺灣高速鐵路股份有限公司報告,共97頁。
陳于高(1993),晚更新世以來南臺灣地區海水面變化與新構造運動研究,國立臺灣大學地質研究所博士論文,共158頁。
王雅芳(2019),台灣西南部垂直變形之時空變化。成功大學地球科學系學位論文,共97頁。
Brown, K., Westbrook, G.K. (1988). Mud diapirism and subcretion in the Barbados Ridge accretionary complex: the role of fluids in accretionary processes. Tectonics 7(3), 613–640.
Brown, K.M. (1990). The nature and hydrogeologic significance of mud diapirs and diatremes for accretionary systems. Journal of Geophysical Research 95, B6, 8969–8982.
Ching, K. E., R. J. Rau, J. C. Lee, and J. C. Hu (2007), Contemporary deformation of tectonic escape in SW Taiwan from GPS observations, 1995-2005, Earth Planet. Sci. Lett., 262, 601-619.
Ching, K.-E., J. R. Gourley, Y.-H. Lee, S.-C. Hsu, K.-H. Chen, and C.-L. Chen (2015), Rapid deformation rates due to development of diapiric anticline in southwestern Taiwan from geodetic observations, Tectonophysics, in press,j.tecto.2015.07.020.
Chen, K.H., Yang, M., Huang, Y.T., Ching, K.E., Rau, R.J., 2011. Vertical displacement rate field of Taiwan from geodetic levelling data 2000–2008. Surv. Rev. 43, 296–302.
Chen, S. C., Hsu, S. K., Wang, Y., Chung, S. H., Chen, P. C., Tsai, C. H., Liu, C. S., Lin,H. S. & Lee, Y. W. (2014). Distribution and characters of the mud diapirs and mudvolcanoes off southwest Taiwan. J. Asian Earth Sci., 92, 201-214. doi:10.1016/j.jseaes.2013.10.009.
Deffontaines, B., Lacombe, O., Angelier, J., Chu, H. T., Mouthereau, F., Lee, C. T.,Deramond, J., Lee, J. F., Yu, M. S., & Liew, P. M. (1997). Quaternary transfer faulting in the Taiwan Foothills: evidence from a multisource approach.Tectonophysics,274(1),61-82.doi.10.1016/S0040-1951(96)00298-3.
Dimitrov, L.I. (2002). Mud volcanoes-the most important pathway for degassing deeply buried sediments. Earth-Science Reviews 59, 49–76. Milkov, A.V., 2000. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology 167, 29–42.
Doo, W.-B., S.-K. Hsu, C.-L. Lo, S.-C. Chen, C.-H. Tsai, J. -Y. Lin, Y.-P. Huang, Y.-S. Huang, S.-D. Chiu, and Y.-F. Ma, (2015), Gravity anomalies of the active mud diapirs off southwest Taiwan. Geophys. J. Int., 203, 2089-2098, doi:10.1093/gji/ggv430.
Hsieh, S. H. (1972), Subsurface Geology and Gravity Anomalies of the Tainan and Chungchou Structures of the Coastal Plain of Southwestern Taiwan. Petrol. Geol. Taiwan, 10, 323-338.
Hsu, T. L., and H. C. Chang (1979), Quaternary faulting in Taiwan. Mem. Geol. Soc. China, 3, 155-165
Hsu, Y. J., S. B. Yu., M., Kuo, L.C. Simons, and H. Y. Chen (2009a), Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms, Tectonophysics, 479, 4-18.
Hu, J. C., C. S. Hou, L. C. Shen, Y. C. Chan, R. F. Chen, C. Huang, R. J. Rau, K. H. Chen, C. W. Lin, M. H. Huang, and P. F. Nien (2007), Fault activity and lateral extrusion inferred from velocity field revealed by GPS measurements in the Pingtung area of southwestern Taiwan, J. Asian Earth Sci., 31, 287-302.
Huang, M. H., Tung, H., Fielding, E. J., Huang, H. H., Liang, C., Huang, C., & Hu, J. C.(2016). Multiple fault slip triggered above the 2016 Mw 6.4 MeiNong earthquake inTaiwan. Geophys. Res. Lett., 43(14), 7459-7467. doi: 10.1002/2016GL069351.
Hudec, M. R., & Soto, J. I. (2021). Piercement mechanisms for mobile shales. Basin Research, 33(5), 2862-2882.
Kopf, A.J. (2002). Significance of mud volcanism. Review of Geophysics 40(2), 1–52.
Klaucke, I., et al. (2015), Fluid venting and seepage at accretionary ridges: the Four Way Closure Ridge offshore SW Taiwan. Geo-Marine Letters 36(3): 165-174.
Lacombe, O., Mouthereau, F., Deffontaines, B., Angelier, J., Chu, H.T., Lee, C.T.(1999).Geometry and Quaternary kinematics of fold-and-thrust units of southwesternTaiwan. Tectonics 18, 1198–1223.
Lacombe, O., F. Mouthereau, J. Angelier, and B. Deffontaines (2001), Structural, geodetic and seismological evidence for tectonic escape in SW Taiwan, Tectonophysics, 333, 323-345.
Lacombe, O., Angelier, J., Mouthereau, F., Chu, H.-T., Deffontaines, B., Lee, J.-C., Rocher, M., Chen, R.-F. and Siame, L. (2004), The Liuchiu Hsu island offshore SW Taiwan: tectonic versus diapiric anticline development and comparisons with onshore structures. Comptes Rendus Geoscience 336, 815-825.
Lin, A. T., A. B. Watts, and S. P. Hesselbo (2003), Cenozoic stratigraphy and subsidence history of the South China Seamargin in the Taiwan region. Basin Res, 15, 453-478.
Lu, C. Y. and J. Malavieille (1994), Oblique convergence, indentation and rotation tectonics in the Taiwan Mountain Belt: insights from experimental modeling. Earth Planet. Sci. Lett. 121, 477–494.
Lu, C. Y., F. S. Jeng, K. J. Chang, and W. T. Jian (1998), Impact of basement high on the structure and kinematics of western Taiwan thrust wedge:insights from sandbox models. Terr. Atmos. Ocean Sci. 9, 533-550.
Liu, C.-S., Huang, I.-L., Teng, L.S. (1997). Structural features off southwestern Taiwan. Marine Geology 137, 305– 319.
Molnar, P., and P. Tapponnier (1978), Active Tectonics of Tibet. Journal of Geophysical Researc, 83 (11), 5361-5375.
Milkov, A.V. (2000). Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology 167, 29–42.
Pan, Y. S. (1968), Interpretation and seismic coordination of the Bouguer gravity anomalies over southwestern Taiwan, Petrol. Geol. Taiwan 6, 197-207.
Pérez-Belzuz, F., Alonso, B., Ercilla, G. (1997). History of mud diapirism and trigger mechanisms in the Western Alboran Sea. Tectonophysics 282, 399–422.
Sun, S. C. (1964), Photogeologic study of the Tainan-Kaohsiung coastal plain area, Taiwan. Petrol. Geol. Taiwan 3, 39-51.
Sun, S.-C., Liu, C.-S.,(1993). Mud diapir and submarine channel deposits in offshore Kaosiung-Hengchun, southwest Taiwan. Petroleum Geology of Taiwan 28, 1–14.
Suppe, J. (1984). Kinematics of arc-continent collision, flipping of subduction and back-arc spreading near Taiwan.
Soto, J. I., Hudec, M. R., Mondol, N. H., & Heidari, M. (2021). Shale transformations and physical properties—Implications for seismic expression of mobile shales. Earth-Science Reviews, 220, 103746
Tapponnier, P., G. Peltzer., A. Y. Le Dain., R. Armijo, and P. Cobbld (1982), Propagation extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology, 10 (12), 611-616.
Talukder, A.R., Bialas, J., Klaeschen, D., Buerk, D., Brueckmann, W., Reston, Hovland, M., Curzi, P.V. (1989.) Gas seepage and assumed mud diapirism in the Italian central Adriatic Sea. Marine and Petroleum Geology 6, 161–169.
T., Breitzke, M. (2007). High-resolution, deep tow, multichannel seismic and sidescan sonar survey of the submarine mounds and associated BSR off Nicaragua pacific margin. Marine Geology 241, 33–43. Limonov, A.F., Woodside, J.M., Cita, M.B.,Ivanov, M.K. (1996). TheMediterranean Ridge and related muddiapirism: a background. MarineGeology 132, 7–19.
Wiltschko, D. V., Hassler, L., Hung, J. H., & Liao, H. S. (2010). From accretion to collision: motion and evolution of the Chaochou Fault, southern Taiwan. Tectonics, 29(2).
Wang, Y. J., Chan, C. H., Lee, Y. T., Ma, K. F., Shyu, J. B. H., Rau, R. J., & Cheng, C. T. (2016). Probabilistic seismic hazard assessment for Taiwan. Terr. Atmos. Ocean. Sci., 27(3), 325-340.
Yu, S.-B., H.-Y. Chen, and L.-C. Kuo (1997), Velocity field of GPS Stations in the Taiwan area, Tectonophysics, 274, 41-59.