| 研究生: |
蔡怡安 Tsai, Yi-An |
|---|---|
| 論文名稱: |
透過二聚體單體和二錫基觸媒開發高生質含量的聚對苯二甲酸異山梨酯 Developing High-Biomass-Content Poly(isosorbide terephthalate) via Dimer Monomers and A Distannoxane Catalyst |
| 指導教授: |
林彥丞
Lin, Yan-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 聚酯 、異山梨醇 、二聚體單體 、介電常數 、損耗因子 |
| 外文關鍵詞: | polyesters, isosorbide, dimer monomers, dielectric constant, dissipation factor |
| 相關次數: | 點閱:18 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於全球暖化所引發的極端氣候現象越發的頻繁且嚴重,如何降低二氧化碳排放量的議題逐漸的受到重視,尤其是在石化業、製造業上急需找出能夠降低碳排係數的替代方法。因此,有一些企業開始使用各種生質來源的單體部分取代傳統石化材料以從根本上降低碳排係數。在眾多生質材料中,異山梨醇 (ISB) 因為其獨特的環狀結構和手性成為相當值得進一步開發的材料之一。然而作為二級醇,反應性要遠低於一級醇,因此在聚合上容易造成分子量偏低和共聚比例偏差的問題,使其難以實際應用。本研究使用聚對苯二甲酸異山梨酯 (PIT) 作為基礎的共聚酯,由於PIT本身脆性和較差的機械性質,將其和2種生質來源的長碳鏈二聚體單體,分別為二醇 (DO)和二酸 (DA) 進行5~50 mol%的共聚。此外,針對ISB反應性低的問題,使用鈦基和錫基的2種觸媒並加入對甲酚作為活性試劑進行合成方法的最佳化。結果表明,使用錫基觸媒並加入對甲酚可以使共聚酯具有最高的分子量並保持準確的共聚比例。DO和DA系列相較於PIT都具有更高的熱分解溫度(從302度上升至390度)和較低的玻璃轉化溫度(從174度下降至90度),表明長碳鏈單體的引入可以在提升熱穩定性的同時降低加工難度。並且這樣的引入可以大幅改善PIT的機械性質,尤其是50% DA具有高達600% 的斷裂伸長率;而50% DO則更加堅硬,具有1.87 MPa 的極限拉伸強度。在29 GHz 下的高頻介電量測的結果表明隨著長碳鏈二聚體共聚的比例提升,介電常數 (Dk) 和損耗因子 (Df) 呈現下降的趨勢,並且在50% DO達到最低的Dk (2.53) 和Df (0.0046)。這一系列的共聚酯都具有相當高的生質含量,即便是PIT也具有約52.2 wt%的生質含量,而DA系列更是具有最高達86.1 wt%的生質含量。本研究不僅成功改善了PIT的合成效率與性質,更透過引入生質長碳鏈二聚體有效降低了高頻介電損耗,展現出其作為低碳排、可持續材料在電子材料或綠色塑料等高階應用上的潛力,為未來發展高性能且環境友善的聚合材料提供了嶄新的方向。
In recent years, the increasing frequency and severity of extreme weather events caused by global warming have drawn growing attention to the issue of reducing CO2 emissions. This is particularly critical in the petrochemical and manufacturing industries, where alternative approaches to lower carbon emission coefficients are urgently needed. As a result, some companies have started incorporating biobased monomers to partially replace traditional petrochemical materials in order to fundamentally reduce carbon emissions. Among various biobased materials, isosorbide (ISB) has emerged as a promising candidate due to its unique ring-like structure and chirality. However, as a secondary diol, ISB exhibits significantly lower reactivity compared to primary diols, often leading to issues such as low molecular weight and inaccurate copolymer composition during polymerization, thus limiting its practical applications. This study utilizes poly(isosorbide terephthalate) (PIT) as the base copolyester. Due to PIT's inherent brittleness and poor mechanical properties, it is copolymerized with two biobased long-alkyl dimers, a diol (DO) and a diacid (DA), at 5–50 mol% incorporation levels. To address the low reactivity of ISB, two types of catalysts (titanium-based and tin-based) were employed, and p-cresol was introduced as a reactive regent to optimize the synthesis process. The results indicate that the use of a tin-based catalyst combined with p-cresol leads to copolyesters with the highest molecular weights and precise copolymer composition control. Compared to PIT, both DO and DA series exhibited higher decomposition temperatures (rising from 302 °C to 390 °C) and lower glass transition temperatures (dropping from 174 °C to 90 °C), indicating that the incorporation of long-alkyl dimers improves thermal stability while also facilitating easier processing. Moreover, the introduction of these monomers significantly enhanced the mechanical properties of PIT, with 50% DA showing an elongation at break up to 600%, and 50% DO achieving a ultimate tensile strength of 1.87 MPa. High-frequency dielectric measurements at 29 GHz revealed that increasing the content of the long-alkyl dimers leads to a decreasing trend in both dielectric constant (Dk) and dissipation factor (Df), with the lowest values observed in the 50% DO copolyester (Dk = 2.53, Df = 0.0046). All of the synthesized copolyesters exhibited high biocontent, with PIT alone containing approximately 52.2 wt%, and the DA series reaching up to 86.1 wt%. This study not only successfully improved the synthesis efficiency and properties of PIT but also demonstrated that incorporating biobased long-alkyl dimers can effectively reduce high-frequency dielectric losses. These findings highlight the potential of these materials as low CO2 emissions, sustainable alternatives for advanced applications such as electronic components and green plastics, offering a novel direction for the development of high-performance, environmentally friendly polymers.
(1) Udara Willhelm Abeydeera, L. H.; Wadu Mesthrige, J.; Samarasinghalage, T. I. Global research on carbon emissions: A scientometric review. Sustainability 2019, 11 (14), 3972.
(2) Wu, J.-S. Measuring economic development and carbon dioxide emissions inefficiency. SAGE Open 2023, 13 (1), 21582440231154418.
(3) James, N.; Menzies, M. Global and regional changes in carbon dioxide emissions: 1970–2019. Physica A: Statistical Mechanics and its Applications 2022, 608, 128302.
(4) Matthews, H. D.; Gillett, N. P.; Stott, P. A.; Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 2009, 459 (7248), 829-832.
(5) Schwartzman, P.; Schwartzman, D. Can the 1.5 deg C warming target be met in a global transition to 100% renewable energy? arXiv preprint arXiv:2012.03157 2020.
(6) Kohlscheen, E.; Moessner, R.; Takats, E. Effects of carbon pricing and other climate policies on CO2 emissions. arXiv preprint arXiv:2402.03800 2024.
(7) Zuiderveen, E. A.; Kuipers, K. J.; Caldeira, C.; Hanssen, S. V.; van der Hulst, M. K.; de Jonge, M. M.; Vlysidis, A.; van Zelm, R.; Sala, S.; Huijbregts, M. A. The potential of emerging bio-based products to reduce environmental impacts. Nature Communications 2023, 14 (1), 8521.
(8) Narayan, R. Carbon footprint of bioplastics using biocarbon content analysis and life-cycle assessment. MRS bulletin 2011, 36 (9), 716-721.
(9) Huang, K.; Peng, X.; Kong, L.; Wu, W.; Chen, Y.; Maravelias, C. T. Greenhouse gas emission mitigation potential of chemicals produced from biomass. ACS sustainable chemistry & engineering 2021, 9 (43), 14480-14487.
(10) Fazeni‐Fraisl, K.; Lindorfer, J. Comparative life cycle assessment of first‐and second‐generation bio‐isobutene as a drop‐in substitute for fossil isobutene. Biofuels, Bioproducts and Biorefining 2023, 17 (1), 207-225.
(11) Luo, C.; Zhou, Y.; Chen, Z.; Bian, X.; Chen, N.; Li, J.; Wu, Y.; Yang, Z. Comparative life cycle assessment of PBAT from fossil-based and second-generation generation bio-based feedstocks. Science of The Total Environment 2024, 954, 176421.
(12) Ali, S. S.; Abdelkarim, E. A.; Elsamahy, T.; Al-Tohamy, R.; Li, F.; Kornaros, M.; Zuorro, A.; Zhu, D.; Sun, J. Bioplastic production in terms of life cycle assessment: A state-of-the-art review. Environmental science and ecotechnology 2023, 15, 100254.
(13) Kim, T.; Bamford, J.; Gracida-Alvarez, U. R.; Benavides, P. T. Life cycle greenhouse gas emissions and water and fossil-fuel consumptions for polyethylene furanoate and its coproducts from wheat straw. ACS Sustainable Chemistry & Engineering 2022, 10 (8), 2830-2843.
(14) Ballús, O.; Guix, M.; Baquero, G.; Bacardit, A. Life Cycle Environmental Impacts of a Biobased Acrylic Polymer for Leather Production. Polymers 2023, 15 (5), 1318.
(15) Shahid, A.; Silvestre, J.; Hofmann, M.; Garrido, M.; Correia, J. Life cycle assessment of an innovative bio-based unsaturated polyester resin and its use in glass fibre reinforced bio-composites produced by vacuum infusion. Journal of Cleaner Production 2024, 441, 140906.
(16) Wang, Z.; Ganewatta, M. S.; Tang, C. Sustainable polymers from biomass: Bridging chemistry with materials and processing. Progress in Polymer Science 2020, 101, 101197.
(17) Xie, Y.; Gao, S.; Zhang, D.; Wang, C.; Chu, F. Bio-based polymeric materials synthesized from renewable resources: A mini-review. Resources Chemicals and Materials 2023, 2 (3), 223-230.
(18) Delidovich, I.; Hausoul, P. J.; Deng, L.; Pfützenreuter, R.; Rose, M.; Palkovits, R. Alternative monomers based on lignocellulose and their use for polymer production. Chemical reviews 2016, 116 (3), 1540-1599.
(19) Pei, F.; Liu, L.; Zhu, H.; Guo, H. Recent advances in lignocellulose-based monomers and their polymerization. Polymers 2023, 15 (4), 829.
(20) Gandini, A.; Lacerda, T. M. From monomers to polymers from renewable resources: Recent advances. Progress in Polymer Science 2015, 48, 1-39.
(21) Zhang, Q.; Song, M.; Xu, Y.; Wang, W.; Wang, Z.; Zhang, L. Bio-based polyesters: Recent progress and future prospects. Progress in Polymer Science 2021, 120, 101430.
(22) Mahajan, J. S.; Gottlieb, E. R.; Kim, J. M.; Epps III, T. H. Toward Sustainable Materials: From Lignocellulosic Biomass to High-Performance Polymers. Accounts of Materials Research 2025, 6 (3), 316-326.
(23) Kaur, R.; Pathak, L.; Vyas, P. Biobased polymers of plant and microbial origin and their applications-a review. Biotechnology for Sustainable Materials 2024, 1 (1), 13.
(24) Fenouillot, F.; Rousseau, A.; Colomines, G.; Saint-Loup, R.; Pascault, J.-P. Polymers from renewable 1, 4: 3, 6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review. Progress in Polymer Science 2010, 35 (5), 578-622.
(25) Okada, M.; Tsunoda, K.; Tachikawa, K.; Aoi, K. Biodegradable polymers based on renewable resources. IV. Enzymatic degradation of polyesters composed of 1, 4: 3.6‐dianhydro‐d‐glucitol and aliphatic dicarboxylic acid moieties. Journal of applied polymer science 2000, 77 (2), 338-346.
(26) Vilela, C.; Sousa, A. F.; Fonseca, A. C.; Serra, A. C.; Coelho, J. F.; Freire, C. S.; Silvestre, A. J. The quest for sustainable polyesters–insights into the future. Polymer Chemistry 2014, 5 (9), 3119-3141.
(27) Yang, G.; Zhang, R.; Huang, H.; Liu, L.; Wang, L.; Chen, Y. Synthesis of novel biobased polyimides derived from isomannide with good optical transparency, solubility and thermal stability. RSC Advances 2015, 5 (83), 67574-67582.
(28) Saxon, D. J.; Luke, A. M.; Sajjad, H.; Tolman, W. B.; Reineke, T. M. Next-generation polymers: Isosorbide as a renewable alternative. Progress in Polymer Science 2020, 101, 101196.
(29) Laanesoo, S.; Bonjour, O.; Parve, J.; Parve, O.; Matt, L.; Vares, L.; Jannasch, P. Poly (alkanoyl isosorbide methacrylate) s: From amorphous to semicrystalline and liquid crystalline biobased materials. Biomacromolecules 2020, 22 (2), 640-648.
(30) Wang, H.; Xu, F.; Zhang, Z.; Feng, M.; Jiang, M.; Zhang, S. Bio-based polycarbonates: progress and prospects. RSC Sustainability 2023, 1 (9), 2162-2179.
(31) Zhou, X.; Zhai, Y.; Ren, K.; Cheng, Z.; Shen, X.; Zhang, T.; Bai, Y.; Jia, Y.; Hong, J. Life cycle assessment of polycarbonate production: Proposed optimization toward sustainability. Resources, Conservation and Recycling 2023, 189, 106765.
(32) Wang, P.; Park, J. H.; Sayed, M.; Chang, T.-S.; Moran, A.; Chen, S.; Pyo, S.-H. Sustainable synthesis and characterization of a bisphenol A-free polycarbonate from a six-membered dicyclic carbonate. Polymer chemistry 2018, 9 (27), 3798-3807.
(33) Wu, X.; Xu, D.; Trimmel, G.; Barta, K. Novel stereoisomeric lignin-derived polycarbonates: towards the creation of bisphenol polycarbonate mimics. Polymer Chemistry 2023, 14 (8), 907-912.
(34) Hauenstein, O.; Agarwal, S.; Greiner, A. Bio-based polycarbonate as synthetic toolbox. Nature communications 2016, 7 (1), 11862.
(35) Brzoska, J.; Datta, J.; Konefał, R.; Pokorný, V.; Beneš, H. The influence of bio-based monomers on the structure and thermal properties of polyurethanes. Scientific Reports 2024, 14 (1), 29042.
(36) Nogueira, P.; Costa, I.; Araújo, R.; Pasa, V. Bio-oil-based polyurethane coatings: A sustainable approach to corrosion protection. Progress in Organic Coatings 2024, 194, 108572.
(37) Campana, F.; Brufani, G.; Mauriello, F.; Luque, R.; Vaccaro, L. Green polyurethanes from bio-based building blocks: recent advances and applications. Green Synthesis and Catalysis 2024.
(38) Jayalath, P.; Ananthakrishnan, K.; Jeong, S.; Shibu, R. P.; Zhang, M.; Kumar, D.; Yoo, C. G.; Shamshina, J. L.; Therasme, O. Bio-Based Polyurethane Materials: Technical, Environmental, and Economic Insights. Processes 2025, 13 (5), 1591.
(39) Mo, Y.; Huang, X.; Hu, C. Recent Advances in the Preparation and Application of Bio-Based Polyurethanes. Polymers 2024, 16 (15), 2155.
(40) Winnacker, M.; Rieger, B. Biobased polyamides: recent advances in basic and applied research. Macromolecular rapid communications 2016, 37 (17), 1391-1413.
(41) Kleybolte, M. M.; Zainer, L.; Liu, J. Y.; Stockmann, P. N.; Winnacker, M. (+)‐Limonene‐Lactam: Synthesis of a Sustainable Monomer for Ring‐Opening Polymerization to Novel, Biobased Polyamides. Macromolecular Rapid Communications 2022, 43 (17), 2200185.
(42) Rist, M.; Greiner, A. Synthesis, Characterization, and the Potential for Closed Loop Recycling of Plant Oil-Based PA X. 19 Polyamides. ACS Sustainable Chemistry & Engineering 2022, 10 (50), 16793-16802.
(43) Chen, C.; Hu, J.; Wang, Z.; Ma, J.; Cheng, K.; Lv, J.; Zeng, K.; Yang, G. Synthesis and characterization of novel polyamides containing purine moiety. Polymer-Plastics Technology and Engineering 2018, 57 (13), 1325-1333.
(44) Yoshida, T.; Touji, M.; Takagi, H.; Shimizu, N.; Igarashi, N.; Sakurai, S.; Uchida, M.; Kaneko, Y. Structure and mechanical properties of biobased polyamide 11 specimens subjected to different heat treatments. Polymer Journal 2024, 56 (9), 833-845.
(45) Hu, J.; Chen, C.; Yang, F.; He, B.; Lu, Z.; Li, R.; Yang, G.; Zeng, K. High performance polyimides containing bio-molecule adenine building block from DNA. Polymer 2018, 146, 407-419.
(46) Hu, J.; Wang, Z.; Lu, Z.; Chen, C.; Shi, M.; Wang, J.; Zhao, E.; Zeng, K.; Yang, G. Bio-based adenine-containing high performance polyimide. Polymer 2017, 119, 59-65.
(47) Zhang, H.; Li, J.; Tian, Z.; Liu, F. Synthesis and properties of novel alicyclic‐functionalized polyimides prepared from natural—(D)‐camphor. Journal of Applied Polymer Science 2013, 129 (6), 3333-3340.
(48) Liu, L.; Duan, Y.; Yun, H.; Chen, X.; Liu, J.; Lv, S.; Zhang, Y. Progress on the research and development of the biomass-based polyimide. Industrial Crops and Products 2024, 220, 119239.
(49) Gong, C.; Liu, H.; Wu, S.; Liu, Z.; Zheng, S.; Tang, Y.; Qiu, Z.; Zhang, R.; Yan, Y. Structurally programmed bioderived polyimide for foldable humidity sensors with ultrafast response and recovery times. Chemical Engineering Journal 2024, 500, 157172.
(50) Li, J.; Zhang, H.; Liu, F.; Lai, J.; Qi, H.; You, X. A new series of fluorinated alicyclic-functionalized polyimides derivated from natural-(D)-camphor: Synthesis, structure–properties relationships and dynamic dielectric analyses. Polymer 2013, 54 (21), 5673-5683.
(51) Lin, J.-W.; Chao, T.-C.; Busireddy, M. R.; Chen, J.-T.; Hsu, C.-S. Green approaches in manufacturing polyimides: from eugenol-based monomers to cross-linked polyimides with low dielectric properties utilizing γ-valerolactone as the solvent. ACS Sustainable Chemistry & Engineering 2024, 12 (37), 14009-14017.
(52) Fernandes, C. D.; Oechsler, B. F.; Sayer, C.; de Oliveira, D.; de Araújo, P. H. H. Recent advances and challenges on enzymatic synthesis of biobased polyesters via polycondensation. European Polymer Journal 2022, 169, 111132.
(53) Kasmi, N.; Pinel, C.; Perez, D. D. S.; Dieden, R.; Habibi, Y. Synthesis and characterization of fully biobased polyesters with tunable branched architectures. Polymer Chemistry 2021, 12 (7), 991-1001.
(54) Zia, K. M.; Noreen, A.; Zuber, M.; Tabasum, S.; Mujahid, M. Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review. International journal of biological macromolecules 2016, 82, 1028-1040.
(55) Llevot, A.; Grau, E.; Carlotti, S.; Grelier, S.; Cramail, H. Renewable (semi) aromatic polyesters from symmetrical vanillin-based dimers. Polymer Chemistry 2015, 6 (33), 6058-6066.
(56) Oliver-Cuenca, V.; Salaris, V.; Muñoz-Gimena, P. F.; Agüero, Á.; Peltzer, M. A.; Montero, V. A.; Arrieta, M. P.; Sempere-Torregrosa, J.; Pavon, C.; Samper, M. D. Bio-Based and Biodegradable Polymeric Materials for a Circular Economy. Polymers 2024, 16 (21), 3015.
(57) Li, Z.-M.; Li, X.-L.; Li, Y.; Zhang, Y.-H.; Fu, T.; Wang, X.-L.; Wang, Y.-Z. High-performance chemically recyclable multifunctional polyolefin-like biomass-derived polyester materials. Materials Horizons 2025, 12 (3), 946-956.
(58) Terzopoulou, Z.; Bikiaris, D. N. Biobased plastics for the transition to a circular economy. Materials Letters 2024, 362, 136174.
(59) Noordover, B. A.; Duchateau, R.; van Benthem, R. A.; Ming, W.; Koning, C. E. Enhancing the functionality of biobased polyester coating resins through modification with citric acid. Biomacromolecules 2007, 8 (12), 3860-3870.
(60) Fei, X.; Wang, J.; Zhang, X.; Jia, Z.; Jiang, Y.; Liu, X. Recent progress on bio-based polyesters derived from 2, 5-furandicarbonxylic acid (FDCA). Polymers 2022, 14 (3), 625.
(61) Pellis, A.; Weinberger, S.; Gigli, M.; Guebitz, G. M.; Farmer, T. J. Enzymatic synthesis of biobased polyesters utilizing aromatic diols as the rigid component. European Polymer Journal 2020, 130, 109680.
(62) Yu, P.-J.; Lin, Y.-C.; Chen, W.-C. Review of bioderived and biodegradable polymers/block-copolymers and their biomedical and electronic applications. Polymer Journal 2024, 1-15.
(63) Zhang, J.; Li, J.; Tang, Y.; Lin, L.; Long, M. Advances in catalytic production of bio-based polyester monomer 2, 5-furandicarboxylic acid derived from lignocellulosic biomass. Carbohydrate polymers 2015, 130, 420-428.
(64) Gubbels, E.; Drijfhout, J. P.; Posthuma-van Tent, C.; Jasinska-Walc, L.; Noordover, B. A.; Koning, C. E. Bio-based semi-aromatic polyesters for coating applications. Progress in Organic Coatings 2014, 77 (1), 277-284.
(65) Tu, Y.-M.; Wang, X.-M.; Yang, X.; Fan, H.-Z.; Gong, F.-L.; Cai, Z.; Zhu, J.-B. Biobased high-performance aromatic–aliphatic polyesters with complete recyclability. Journal of the American Chemical Society 2021, 143 (49), 20591-20597.
(66) Jin, L.; Geng, K.; Arshad, M.; Ahmadi, R.; Ullah, A. Synthesis of fully biobased polyesters from plant oil. ACS Sustainable Chemistry & Engineering 2017, 5 (11), 9793-9801.
(67) Caouthar, A.; Roger, P.; Tessier, M.; Chatti, S.; Blais, J.; Bortolussi, M. Synthesis and characterization of new polyamides derived from di (4-cyanophenyl) isosorbide. European polymer journal 2007, 43 (1), 220-230.
(68) Chen, C.-K.; Lin, Y.-C.; Hsu, L.-C.; Ho, J.-C.; Ueda, M.; Chen, W.-C. High performance biomass-based polyimides for flexible electronic applications. ACS Sustainable Chemistry & Engineering 2021, 9 (8), 3278-3288.
(69) Tsurusaki, Y.; Sawada, R.; Liu, H.; Ando, S. Optical, Dielectric, and Thermal Properties of Bio‐Based Polyimides Derived from An Isosorbide‐Containing Diamine. Macromolecular Rapid Communications 2025, 2401113.
(70) Sawada, R.; Ando, S. Colorless, low dielectric, and optically active semialicyclic polyimides incorporating a biobased isosorbide moiety in the main chain. Macromolecules 2022, 55 (15), 6787-6800.
(71) Hung, Y.-T.; Chen, C.-K.; Lin, Y.-C.; Yu, Y.-Y.; Chen, W.-C. Dimensionally thermally stable biomass-based polyimides for flexible electronic applications. Polymer Journal 2022, 54 (12), 1489-1499.
(72) Sawada, R.; Ando, S. Enhancing optical, dielectric, and thermal properties of bio-based polyimides incorporating isomannide with a bent and sterically constrained conformation. Journal of Materials Chemistry C 2023, 11 (43), 15053-15064.
(73) Sawada, R.; Ando, S. Polarization analysis and humidity dependence of dielectric properties of aromatic and semialicyclic polyimides measured at 10 GHz. The Journal of Physical Chemistry C 2024, 128 (16), 6979-6990.
(74) Liu, H.; Sawada, R.; Yanagimoto, S.; Yanagimoto, Y.; Ando, S. Frequency-dependent dielectric properties of aromatic polyimides in the 25–330 GHz range. Applied Physics Letters 2024, 124 (23).
(75) Feng, L.; Zhu, W.; Zhou, W.; Li, C.; Zhang, D.; Xiao, Y.; Zheng, L. A designed synthetic strategy toward poly (isosorbide terephthalate) copolymers: a combination of temporary modification, transesterification, cyclization and polycondensation. Polymer Chemistry 2015, 6 (42), 7470-7479.
(76) Stanley, N.; Chenal, T.; Jacquel, N.; Saint‐Loup, R.; Prates Ramalho, J. P.; Zinck, P. Organocatalysts for the Synthesis of Poly (ethylene terephthalate‐co‐isosorbide terephthalate): A Combined Experimental and DFT Study. Macromolecular Materials and Engineering 2019, 304 (9), 1900298.
(77) Xu, Y.; Hua, G.; Hakkarainen, M.; Odelius, K. Isosorbide as core component for tailoring biobased unsaturated polyester thermosets for a wide structure–property window. Biomacromolecules 2018, 19 (7), 3077-3085.
(78) Legrand, S.; Jacquel, N.; Amedro, H.; Saint-Loup, R.; Pascault, J.-P.; Rousseau, A.; Fenouillot, F. Synthesis and properties of poly (1, 4-cyclohexanedimethylene-co-isosorbide terephthalate), a biobased copolyester with high performances. European Polymer Journal 2019, 115, 22-29.
(79) Garaleh, M.; Yashiro, T.; Kricheldorf, H. R.; Simon, P.; Chatti, S. (Co‐) Polyesters derived from isosorbide and 1, 4‐cyclohexane dicarboxylic acid and succinic acid. Macromolecular Chemistry and Physics 2010, 211 (11), 1206-1214.
(80) Lomelí-Rodríguez, M.; Corpas-Martínez, J. R.; Willis, S.; Mulholland, R.; Lopez-Sanchez, J. A. Synthesis and characterization of renewable polyester coil coatings from biomass-derived isosorbide, FDCA, 1, 5-pentanediol, succinic acid, and 1, 3-propanediol. Polymers 2018, 10 (6), 600.
(81) Jasinska, L.; Koning, C. E. Unsaturated, biobased polyesters and their cross‐linking via radical copolymerization. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48 (13), 2885-2895.
(82) Sablong, R.; Duchateau, R.; Koning, C. E.; de Wit, G.; van Es, D.; Koelewijn, R.; van Haveren, J. Incorporation of isosorbide into poly (butylene terephthalate) via solid-state polymerization. Biomacromolecules 2008, 9 (11), 3090-3097.
(83) Kricheldorf, H.; Behnken, G.; Sell, M. Influence of isosorbide on glass‐transition temperature and crystallinity of poly (butylene terephthalate). Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 2007, 44 (7), 679-684.
(84) Chavan, N. N. Synthesis and characterization of cholesteric thermotropic liquid crystalline polyesters based on isosorbide. Materials Sciences and Applications 2011, 2 (10), 1520.
(85) Weinland, D. H.; van der Maas, K.; Wang, Y.; Bottega Pergher, B.; van Putten, R.-J.; Wang, B.; Gruter, G.-J. M. Overcoming the low reactivity of biobased, secondary diols in polyester synthesis. Nature Communications 2022, 13 (1), 7370.
(86) Chien, C.-C.; Liu, J.-H. Optical behaviors of cholesteric liquid-crystalline polyester composites with various chiral photochromic dopants. Langmuir 2015, 31 (49), 13410-13419.
(87) Lin, Q.; Pasatta, J.; Long, T. E. Synthesis and characterization of chiral liquid‐crystalline polyesters containing sugar‐based diols via melt polymerization. Journal of Polymer Science Part A: Polymer Chemistry 2003, 41 (16), 2512-2520.
(88) Jadhav, S. A.; Chougule, R. R.; Shinde, Y. A.; Chavan, N. Synthesis and characterization of cholesteric thermotropic liquid crystalline polyesters. Journal of applied polymer science 2007, 103 (2), 1232-1237.
(89) Gu, S.-J.; Yoon, D.-S.; Bang, M.-S. Synthesis and Properties of Cholesteric Liquid Crystalline Polymers with Isosorbide Group. Applied Chemistry for Engineering 2017, 28 (2), 230-236.
(90) Tian, M.; Zhang, B. Y.; Meng, F. B.; Zang, B. L. Main‐chain chiral smectic liquid‐crystalline ionomers containing sulfonic acid groups. Journal of applied polymer science 2006, 99 (3), 1254-1263.
(91) Kuo, C.-C.; Lin, Y.-C.; Chen, Y.-C.; Wu, P.-H.; Ando, S.; Ueda, M.; Chen, W.-C. Correlating the molecular structure of polyimides with the dielectric constant and dissipation factor at a high frequency of 10 GHz. ACS Applied Polymer Materials 2020, 3 (1), 362-371.
(92) Chen, Y.-C.; Lin, Y.-C.; Chang, E.-C.; Kuo, C.-C.; Ueda, M.; Chen, W.-C. Investigation of the structure–dielectric relationship of polyimides with ultralow dielectric constant and dissipation factors using density functional theory. Polymer 2022, 256, 125184.
(93) Noordover, B. A.; van Staalduinen, V. G.; Duchateau, R.; Koning, C. E.; van Benthem, R. A.; Mak, M.; Heise, A.; Frissen, A. E.; van Haveren, J. Co-and terpolyesters based on isosorbide and succinic acid for coating applications: synthesis and characterization. Biomacromolecules 2006, 7 (12), 3406-3416.
(94) Pergher, B. B.; Girigan, N.; Vlasblom, S.; Weinland, D. H.; Wang, B.; van Putten, R.-J.; Gruter, G.-J. M. Reactive phenolic solvents applied to the synthesis of renewable aromatic polyesters with high isosorbide content. Polymer Chemistry 2023, 14 (27), 3225-3238.
(95) Grigore, M. E. Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling 2017, 2 (4), 24.
(96) Bîrcă, A.; Gherasim, O.; Grumezescu, V.; Grumezescu, A. M. Introduction in thermoplastic and thermosetting polymers. In Materials for biomedical engineering, Elsevier, 2019; pp 1-28.
(97) Jagadeesh, P.; Mavinkere Rangappa, S.; Siengchin, S.; Puttegowda, M.; Thiagamani, S. M. K.; Hemath Kumar, M.; Oladijo, O. P.; Fiore, V.; Moure Cuadrado, M. M. Sustainable recycling technologies for thermoplastic polymers and their composites: A review of the state of the art. Polymer Composites 2022, 43 (9), 5831-5862.
(98) Mărieş, G.; Abrudan, A. Thermoplastic polymers in product design. In IOP Conference Series: Materials Science and Engineering, 2018; IOP Publishing: Vol. 393, p 012118.
(99) Yin, Q.; Qin, Y.; Lv, J.; Wang, X.; Luo, L.; Liu, X. Reducing intermolecular friction work: preparation of polyimide films with ultralow dielectric loss from MHz to THz frequency. Industrial & Engineering Chemistry Research 2022, 61 (49), 17894-17903.
(100) Ahmad, Z. Polymer dielectric materials. In Dielectric material, IntechOpen, 2012.
(101) Li, Y.; Sun, G.; Zhou, Y.; Liu, G.; Wang, J.; Han, S. Progress in low dielectric polyimide film–A review. Progress in Organic Coatings 2022, 172, 107103.
(102) Cheng, Y.-C.; Chen, Y.-C.; Lin, Y.-C.; Kuo, C.-C.; Chen, W.-C. Exploring the cross-linking effect on decreasing the dielectric constant and dissipation factor of poly (ester imide) s at a high frequency of 10–40 GHz. ACS Applied Polymer Materials 2023, 5 (10), 7907-7917.
(103) Luo, J.; Tong, H.; Mo, S.; Zhou, F.; Zuo, S.; Yin, C.; Xu, J.; Li, X. Integrated exploration of experimentation and molecular simulation in ester-containing polyimide dielectrics. RSC advances 2023, 13 (2), 963-972.
(104) Maeda, H.; Liang, Y.; Hosoya, R.; Marui, R.; Yoshida, E.; Chen, Y.; Hatakeyama-Sato, K.; Nabae, Y.; Nakagawa, S.; Morikawa, J. Smectic liquid crystalline poly (ester imide) s with low dielectric dissipation factors for high-frequency applications. Polymer Journal 2025, 1-13.
(105) Zhang, C.; He, X.; Lu, Q. High-frequency low-dielectric-loss in linear-backbone-structured polyimides with ester groups and ether bonds. Communications Materials 2024, 5 (1), 55.
(106) Ahmadnian, F.; Velasquez, F.; Reichert, K. H. Screening of Different Titanium (IV) Catalysts in the Synthesis of Poly (ethylene terephthalate). Macromolecular Reaction Engineering 2008, 2 (6), 513-521.
(107) Li, D.; Li, Y.; Zhang, Y.; Xu, Y.; Zhang, X.; Hakkarainen, M. Designing Biobased Poly (ethylene-co-isosorbide terephthalate) Copolyesters with Tunable Properties and Degradability. Biomacromolecules 2025, 26 (4), 2304-2316.
(108) Stanley, N.; Chenal, T.; Delaunay, T.; Saint-Loup, R.; Jacquel, N.; Zinck, P. Bimetallic Catalytic Systems Based on Sb, Ge and Ti for the Synthesis of Poly (ethylene terephthalate-co-isosorbide terephthalate). Polymers 2017, 9 (11), 590.
(109) Xanthopoulou, E.; Zamboulis, A.; Terzopoulou, Z.; Kostoglou, M.; Bikiaris, D. N.; Papageorgiou, G. Z. Effectiveness of esterification catalysts in the synthesis of Poly (Ethylene Vanillate). Catalysts 2021, 11 (7), 822.
(110) Ishii, M.; Okazaki, M.; Shibasaki, Y.; Ueda, M.; Teranishi, T. Convenient synthesis of aliphatic polyesters by distannoxane-catalyzed polycondensation. Biomacromolecules 2001, 2 (4), 1267-1270.
(111) Okawara, R.; Wada, M. Preparation and properties of dimeric tetra-alkyldistannoxane derivatives: XR2SnOSnR2OH and XR2SnOSnR2OR′. Journal of Organometallic Chemistry 1963, 1 (1), 81-88.
(112) Wada, M.; Nishino, M.; Okawara, R. Preparation and properties of dialkyltin isothiocyanate derivatives. Journal of Organometallic Chemistry 1965, 3 (1), 70-75.
(113) Okada, M.; Okada, Y.; Aoi, K. Synthesis and degradabilities of polyesters from 1, 4: 3, 6‐dianhydrohexitols and aliphatic dicarboxylic acids. Journal of Polymer Science Part A: Polymer Chemistry 1995, 33 (16), 2813-2820.
(114) Storbeck, R.; Rehahn, M.; Ballauff, M. Synthesis and properties of high‐molecular‐weight polyesters based on 1, 4: 3, 6‐dianhydrohexitols and terephthalic acid. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics 1993, 194 (1), 53-64.
(115) Yoon, W. J.; Oh, K. S.; Koo, J. M.; Kim, J. R.; Lee, K. J.; Im, S. S. Advanced polymerization and properties of biobased high T g polyester of isosorbide and 1, 4-cyclohexanedicarboxylic acid through in situ acetylation. Macromolecules 2013, 46 (8), 2930-2940.
(116) Zhang, S.-Y.; Fu, T.; Gong, Y.; Guo, D.-M.; Wang, X.-L.; Wang, Y.-Z. Design and synthesis of liquid crystal copolyesters with high-frequency low dielectric loss and inherent flame retardancy. Chinese Chemical Letters 2023, 34 (5), 107615.
(117) Wu, Y.; Wu, K.; Xiao, F.; Diao, W.; He, D.; Yang, H.; Shi, J. High Thermal Conductivity and Low Dielectric Constant of Polyesters Based on Fluorine and Mesogenic Unit. Macromolecular Chemistry and Physics 2023, 224 (19), 2300078.
(118) Lee, J. H.; Moon, J.; Shin, Y. R.; Hwang, G. I.; Lee, S.; Jeong, Y. G. Fabrication and characterization of low dielectric nanocomposites based on thermotropic liquid crystalline polyester and octaphenyl‐polyhedral oligomeric silsesquioxane. Polymer Composites.