| 研究生: |
蔡佳芸 Tsai, Chia-Yun |
|---|---|
| 論文名稱: |
棘阿米巴分泌類外泌體囊泡的功能及蛋白質體學分析 Functional Characterization and Proteomic Profiling of Exosome-like Vesicles Secreted from Acanthamoeba |
| 指導教授: |
林威辰
Lin, Wei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 棘阿米巴 、類外泌體囊泡 、外泌性分泌性產物 |
| 外文關鍵詞: | Acanthamoeba, exosome-like vesicles, excretory-secretory products |
| 相關次數: | 點閱:62 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
棘阿米巴是一種自由營生的阿米巴原蟲,可引起眼睛和中樞神經系統的嚴重感染,造成相關疾病如:棘阿米巴性角膜炎(AK)和慢性肉芽腫性阿米巴腦膜炎(GAE)。然而,棘阿米巴的致病機制目前仍有待闡明。根據我們的初步結果顯示當細胞與致病性棘阿米巴共同培養時,即使沒有與棘阿米巴接觸,也會使得細胞呈現皺縮且漂浮的情形。在本篇研究中,經由穿透式電子顯微鏡與奈米粒子追蹤分析技術等方法學,發現棘阿米巴會產生類外泌體囊泡(exosome-like vesicles;EVs),我們推測類外泌體囊泡會攜帶特定的分子例如:蛋白質和其他生物分子,而使目標細胞發生一些改變。為了釐清這些囊泡的功能特性,我們自外泌性分泌性產物中純化分離了類外泌體囊泡並且與細胞進行共同培養,透過固定影像擴時攝影顯示,這些由寄生蟲分泌的囊泡會內化至細胞中,並且使得細胞生長受到干擾。接著,利用蛋白質體學技術,分析棘阿米巴分泌的類外泌體囊泡中共鑑定出的130種蛋白質,由生物資訊分析的結果顯示,這些蛋白質主要是酵素類,如:水解酶和氧化還原酶。此外,棘阿米巴所分泌的類外泌體囊泡具有免疫調節能力,誘發發炎類細胞激素,如:IL-6、IL-12的mRNA表達量上升。簡而言之,我們的發現提供了類外泌體囊泡於非接觸介導的棘阿米巴致病機轉與寄生蟲和宿主間的調節作用有了更清楚的理解。
In this study, we discover that Acanthamoeba produced exosome-like vesicles (EVs) which are present in the extracellular excretory-secretory products by using the combination methodologies including transmission electron microscopy and NanoSight. We suggest that the cargo molecules within EVs such as proteins and other biomolecules could make some alterations in the targeted cells. In order to examine the functional properties of these vesicles, we purified the EVs from excretory-secretory products and co-cultured with the cells. Time-lapse images show that these parasite-derived vesicles were internalized and caused cells disruption. Next, we described the prospects for targeting by proteomic profiling. A total of 130 proteins were identified in Acanthamoeba EVs, and bioinformatics analyses indicated that these proteins were mainly enzymes, such as hydrolases and oxidoreductases. In brief, our findings provide a better understanding of the contact-independent pathogenicity of Acanthamoeba in host-parasite interaction.
1. Ahmed, K.N. Acanthamoeba: biology and increasing importance in human health. FEMS Microbiology Reviews 30, 564-595 (2006).
2. Baietti, M.F. et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nature cell biology 14, 677-685 (2012).
3. Brown, T.J., Cursons, R.T. & Keys, E.A. Amoebae from antarctic soil and water. Applied and environmental microbiology 44, 491-493 (1982).
4. Buck, A.H. et al. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat Commun 5, 5488 (2014).
5. Choi, D.S., Kim, D.K., Kim, Y.K. & Gho, Y.S. Proteomics of extracellular vesicles: Exosomes and ectosomes. Mass spectrometry reviews 34, 474-490 (2015).
6. Clark, C.G. & Cross, G.A. Circular ribosomal RNA genes are a general feature of schizopyrenid amoebae. The Journal of protozoology 35, 326-329 (1988).
7. Clayton, A. et al. Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. Journal of immunological methods 247, 163-174 (2001).
8. Coakley, G., Maizels, R.M. & Buck, A.H. Exosomes and Other Extracellular Vesicles: The New Communicators in Parasite Infections. Trends in parasitology 31, 477-489 (2015).
9. Cocucci, E. & Meldolesi, J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends in cell biology 25, 364-372 (2015).
10. Denzer, K., Kleijmeer, M.J., Heijnen, H.F., Stoorvogel, W. & Geuze, H.J. Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 113 Pt 19, 3365-3374 (2000).
11. Fujita, Y., Kosaka, N., Araya, J., Kuwano, K. & Ochiya, T. Extracellular vesicles in lung microenvironment and pathogenesis. Trends in Molecular Medicine 21, 533-542.
12. Goldie, B.J. et al. Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons. Nucleic acids research 42, 9195-9208 (2014).
13. Gullett, J. et al. Disseminated granulomatous acanthamoeba infection presenting as an unusual skin lesion. The American journal of medicine 67, 891-896 (1979).
14. Ha, M. & Kim, V.N. Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology 15, 509 (2014).
15. Hessvik, N.P. & Llorente, A. Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences 75, 193-208 (2018).
16. Huang, J.-M. et al. Pathogenic Acanthamoeba castellanii Secretes the Extracellular Aminopeptidase M20/M25/M40 Family Protein to Target Cells for Phagocytosis by Disruption. Molecules 22, 2263 (2017).
17. Hurt, M., Neelam, S., Niederkorn, J. & Alizadeh, H. Pathogenic Acanthamoeba spp. Secrete a Mannose-Induced Cytolytic Protein That Correlates with the Ability To Cause Disease. Infection and Immunity 71, 6243-6255 (2003).
18. Johnstone, R.M., Bianchini, A. & Teng, K. Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood 74, 1844-1851 (1989).
19. Kilvington, S., Heaselgrave, W., Lally, J.M., Ambrus, K. & Powell, H. Encystment of Acanthamoeba during incubation in multipurpose contact lens disinfectant solutions and experimental formulations. Eye & contact lens 34, 133-139 (2008).
20. Kilvington, S., Powell, C.H., Lam, A. & Lonnen, J. Antimicrobial efficacy of multi-purpose contact lens disinfectant solutions following evaporation. Contact lens & anterior eye : the journal of the British Contact Lens Association 34, 183-187 (2011).
21. Logozzi, M. et al. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One 4, e5219 (2009).
22. Lorenzo-Morales, J. et al. Acanthamoeba keratitis: an emerging disease gathering importance worldwide? Trends in parasitology 29, 181-187 (2013).
23. Marciano-Cabral, F. & Cabral, G. Acanthamoeba spp. as agents of disease in humans. Clinical microbiology reviews 16, 273-307 (2003).
24. Mascarenhas, J. et al. Acanthamoeba, fungal, and bacterial keratitis: a comparison of risk factors and clinical features. American journal of ophthalmology 157, 56-62 (2014).
25. Mattana, A. et al. Acanthamoeba castellanii Genotype T4 Stimulates the Production of Interleukin-10 as Well as Proinflammatory Cytokines in THP-1 Cells, Human Peripheral Blood Mononuclear Cells, and Human Monocyte-Derived Macrophages. Infection and Immunity 84, 2953-2962 (2016).
26. Mateescu, B. et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - an ISEV position paper. J Extracell Vesicles 6, 1286095 (2017).
27. McMahon, H.T. & Boucrot, E. Membrane curvature at a glance. Journal of Cell Science 128, 1065-1070 (2015).
28. Momen-Heravi, F. et al. Current methods for the isolation of extracellular vesicles. Biological chemistry 394, 1253-1262 (2013).
29. Moon, E.-K. & Kong, H.-H. Short-Cut Pathway to Synthesize Cellulose of Encysting Acanthamoeba. The Korean Journal of Parasitology 50, 361-364 (2012).
30. Niu, Z. et al. Polymer-based precipitation preserves biological activities of extracellular vesicles from an endometrial cell line. PLOS ONE 12, e0186534 (2017).
31. Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445-452 (2009).
32. Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. The Journal of Experimental Medicine 183, 1161-1172 (1996).
33. Raposo, G. & Stoorvogel, W. Extracellular vesicles: Exosomes, microvesicles, and friends. The Journal of Cell Biology 200, 373-383 (2013).
34. Ross, J. et al. Clinical characteristics of Acanthamoeba keratitis infections in 28 states, 2008 to 2011. Cornea 33, 161-168 (2014).
35. S, S.J., Yong, C., P, S.P. & L, S.V. Exosomes and other extracellular vesicles in host–pathogen interactions. EMBO reports 16, 24-43 (2015).
36. Schey, K.L., Luther, J.M. & Rose, K.L. Proteomics Characterization of Exosome Cargo. Methods (San Diego, Calif.) 87, 75-82 (2015).
37. Sheng, W.H. et al. First case of granulomatous amebic encephalitis caused by Acanthamoeba castellanii in Taiwan. The American journal of tropical medicine and hygiene 81, 277-279 (2009).
38. Siddiqui, R. & Khan, N.A. Biology and pathogenesis of Acanthamoeba. Parasites & Vectors 5, 6 (2012).
39. Simpson, R.J., Kalra, H. & Mathivanan, S. ExoCarta as a resource for exosomal research. Journal of Extracellular Vesicles 1, 18374 (2012).
40. Skog, J. et al. Glioblastoma microvesicles transport RNA and protein that promote tumor growth and provide diagnostic biomarkers. Nature cell biology 10, 1470-1476 (2008).
41. Steinbichler, T.B., Dudás, J., Riechelmann, H. & Skvortsova, I.-I. The role of exosomes in cancer metastasis. Seminars in Cancer Biology 44, 170-181 (2017).
42. Subra, C., Laulagnier, K., Perret, B. & Record, M. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 89, 205-212 (2007).
43. Sugrue, S.P. & Hay, E.D. The identification of extracellular matrix (ECM) binding sites on the basal surface of embryonic corneal epithelium and the effect of ECM binding on epithelial collagen production. J Cell Biol 102, 1907-1916 (1986).
44. Taylor, D.D. & Gercel-Taylor, C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecologic oncology 110, 13-21 (2008).
45. Taylor, D.D., Zacharias, W. & Gercel-Taylor, C. Exosome isolation for proteomic analyses and RNA profiling. Methods in molecular biology (Clifton, N.J.) 728, 235-246 (2011).
46. Théry, C., Zitvogel, L. & Amigorena, S. Exosomes: composition, biogenesis and function. Nature Reviews Immunology 2, 569 (2002).
47. Tkach, M. & Thery, C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell 164, 1226-1232 (2016).
48. Trams, E.G., Lauter, C.J., Salem, N., Jr. & Heine, U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochimica et biophysica acta 645, 63-70 (1981).
49. Twu, O. et al. Trichomonas vaginalis Exosomes Deliver Cargo to Host Cells and Mediate Host∶Parasite Interactions. PLOS Pathogens 9, e1003482 (2013).
50. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature cell biology 9, 654-659 (2007).
51. Wang, J. et al. Exosomes: A Novel Strategy for Treatment and Prevention of Diseases. Frontiers in Pharmacology 8, 300 (2017).
52. Weng, M. et al. Alternatively Activated Macrophages in Intestinal Helminth Infection: Effects on Concurrent Bacterial Colitis. The Journal of Immunology 179, 4721-4731 (2007).
53. Witwer, K.W. et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. Journal of Extracellular Vesicles 2, 20360 (2013).
54. Wollert, T. & Hurley, J.H. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464, 864-869 (2010).
55. Zaidel-Bar, R., Cohen, M., Addadi, L. & Geiger, B. Hierarchical assembly of cell-matrix adhesion complexes. Biochemical Society transactions 32, 416-420 (2004).
56. Zhu, L. et al. Molecular characterization of S. japonicum exosome-like vesicles reveals their regulatory roles in parasite-host interactions. Scientific Reports 6, 25885 (2016).
57. Zitvogel, L. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nature medicine 4, 594-600 (1998).