簡易檢索 / 詳目顯示

研究生: 王俞捷
Wang, Yu-Chieh
論文名稱: YAP/TAZ於肌腱分化中所扮演的角色
The role of YAP/TAZ in tenogenesis
指導教授: 王仰高
Wang, Yang-Kao
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 55
中文關鍵詞: 肌腱分化細胞形狀TGF-β3TAZ
外文關鍵詞: Tenogenesis, Cell geometry, TGF-β3, TAZ
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肌腱是一種緊密對齊的結締組織,它兩端中一側與肌肉連接,並將其收縮的力量傳導至位於另一側的骨骼,因此肌腱負責帶動身體執行各種動作。但若反覆施力不當,有很高機率導致肌腱受傷。受傷類型包含急性撕裂傷和慢性結構變性。由於肌腱少細胞及少血管的特性,肌腱的自我修復效果低下且進程緩慢。為了重建完整的肌腱功能,幹細胞的應用正被積極研究中。目前這項備受期待的治療策略仍在面對容易引發鈣化的瓶頸,但若預先控制幹細胞的分化走向已知可有效減少此隱憂。根據先前的實驗結果顯示,細胞形狀的拉長能夠促使肌腱前驅幹細胞分化成肌腱細胞,但其機制還尚未釐清。由形狀調控的分化過程裡,細胞骨架肌動凝蛋白的收縮是必要的,因此讓我們聯想到受同樣機制調控的一對轉錄共活化蛋白Yes-associated protein (YAP)和transcriptional coactivator with PDZ-binding motif (TAZ),他們可以穿梭細胞核膜,並影響細胞的DNA層面。例如,當細胞延展或接觸較硬的基質時,會促使YAP/TAZ入核,並且參與間質幹細胞的骨分化。另外,已知生長因子TGF-β3會促進肌腱分化,而YAP/TAZ具有其下游的Smad蛋白接合位,顯示出YAP/TAZ與肌腱分化的可能的關聯。因此,我們想要知道YAP/TAZ是否會參與由形狀調控以及由TGF-β3誘導的肌腱分化。在本研究中發現,肌腱前驅幹細胞不管是被塑成長方形或者被投與TGF-β3,其TAZ的變化相似於代表肌腱分化的蛋白SCX和TNMD的表現。此外,在TGF-β3誘導的肌腱分化中,使用YAP/TAZ抑制劑Verteporfin後,SCX和TNMD的表現也隨之下降,然而以微小干擾RNA調降YAP後卻無此現象。這些實驗結果暗示了TAZ可能參與拉長細胞形狀以及TGF-β3誘導的肌腱分化。我們期望未來對於肌腱分化機制的能有進一步瞭解,以促進幹細胞療法在未來臨床的應用。

    Tendon is a well-aligned connective tissue which conveys muscle contraction to bone, and coordinates body movement. As a result, with repetitive tensile force, tendon often encounters injuries such as acute rupture and chronic tendinopathy. Owing to its acellular and avascular nature, tendon self-repair is slow and often incomplete. To reconstruct functional tendon, stem cell therapy is one of developing strategies. However, the problem of ectopic bone formation occurs after stem cells implant. Recently, some have found that leading the stem cell differentiation toward tendon lineage in advance can remove the obstacle effectively. In our lab, by elongating the cell shape, we have successfully induced tenogenesis on tendon stem/ progenitor cells (TSPCs). We were interested in delineating the molecular mechanisms underlying tendon differentiation induced by microenvironmental cues using geometrical control. Given that actomyosin contractility is pivotal for the tendon differentiated process, we then focused on Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). YAP and TAZ are transcriptional coactivators, known as mechanotransducers, shuttling into the nucleus and elicit cell response at DNA level indirectly. The nuclear translocation of YAP and TAZ regulate osteogenic differentiation in mesenchymal stem cells while cells were spreading or on stiff substrate. Moreover, YAP and TAZ have binding sites on Smad, the downstream proteins of canonical transforming growth factor-beta (TGF-β) signal cascade. TGF-βs are essential for tenogenesis, and the fact implies the potential function of YAP/TAZ in tenogenesis. Therefore, we hypothesized that YAP/TAZ mediated shape-controlled and TGF-β-induced tenogenesis. Using rectangle micropattern and TGF-β3 as main inducers, we found that TSPCs possessed a positive relationship between TAZ and the tendon specific markers, such as scleraxis (SCX) and tenomodulin (TNMD). In addition, knockdown YAP by siRNA did not affect TGF-β3-induced tenogenic differentiation whereas YAP/TAZ inhibitor Verteporfin (VP) resulted in a decrease of SCX and TNMD. These results suggest that TAZ plays a role in tenogenesis. Understanding of the molecular mechanisms of how environmental cues regulate tenogenic differentiation would help us for establish better strategies for the treatment of tendon injury.

    Abstract Ⅰ 中文摘要 Ⅲ 誌謝 Ⅳ Introduction 1 Tendon structure and function 1 Tendon injury and current treatment strategies 2 Cell therapy on tendon injury 5 Tenogenic differentiation and induction methods 7 Interaction between geometry and cytoskeleton tension within tenogenic differentiation 9 Mechanotransducer YAP/TAZ and stem cell differentiation 11 The connection between YAP/TAZ and TGF-β signaling pathway 12 Hypothesis 14 Materials and Methods 15 Cell culture 15 MTT assay 15 Flow cytometry analysis 16 Multi-differentiation inductions and their staining methods 16 Elongated shape-induced tenogenesis 18 TGF-β3 induced tenogenesis 19 siRNA transfection 19 Immunofluorescence staining 20 Western blot 21 Statistical analysis 23 Results 24 1. Tenogenesis on TSPCs is induced by elongated shape and TGF-β3 24 1-1. Stemness of TSPCs 24 1-2. Elongated shape induces tenogenic differentiation 25 1-3. TGF-β3 induces tenogenic differentiation 25 2. TAZ but not YAP is induced by either elongated shape or TGF-β3 in TSPCs 26 2-1. TAZ is upregulated by the elongated shape 26 2-2. Upregulation of TAZ in the TGF-β3-induced tendon differentiation 26 3. TAZ expression is positive correlation with tendon markers, and all of them are regulated by TGF-β receptor signaling. 27 3-1. Knockdown YAP does not affect TGF-β3 induced tendon differentiation 27 3-2. Inhibition of TAZ by Verteporfin suppresses TGF-β3 induced tenogenic differentiation 27 3-3. Downregulation of TAZ and tenogenic markers with TGF-β receptor inhibitor SB-431542 29 Discussion 30 Figures 34 Figure 1. Stemness of TSPCs. 34 Figure 2. Elongated shape induces tenogenic differentiation 36 Figure 3. TGF-β3 induces tenogenic differentiation 39 Figure 4. TAZ is upregulated by the elongated shape 40 Figure 5. Upregulated TAZ in TGF-β3-induced tendon differentiation 41 Figure 6. Knockdown YAP does not affect TGF-β3 induced tendon differentiation 42 Figure 7. Treatment of Verteporfin (VP) reduces protein levels of TAZ and SCX 43 Figure 8. TAZ and TGF-β3-induced tenogenic differentiation are alleviated by VP treatment 45 Figure 9. Downregulation of TAZ and tenogenic markers with TGF-β receptor inhibitor SB-431542 47 References 49

    1. Kannus P. Structure of the tendon connective tissue. Scand J Med Sci Sports, 2000. 10(6): p. 312-20.
    2. Thorpe CT and Screen HR. Tendon structure and composition. Adv Exp Med Biol, 2016. 920: p. 3-10.
    3. Lipman K, Wang C, Ting K, et al. Tendinopathy: injury, repair, and current exploration. Drug Des Devel Ther, 2018. 12: p. 591-603.
    4. Xu Y and Murrell GAC. The basic science of tendinopathy. Clin Orthop Relat Res, 2008. 466(7): p. 1528-1538.
    5. Sharma P and Maffulli N. Tendon injury and tendinopathy: healing and repair. J Bone Joint Surg Am, 2005. 87(1): p. 187-202.
    6. Yan Z, Yin H, Nerlich M, et al. Boosting tendon repair: interplay of cells, growth factors and scaffold-free and gel-based carriers. J Exp Orthop, 2018. 5(1): p. 1.
    7. Magnusson SP, Langberg H, and Kjaer M. The pathogenesis of tendinopathy: balancing the response to loading. Nat Rev Rheumatol, 2010. 6(5): p. 262-8.
    8. Magnusson SP, Heinemeier KM, and Kjaer M. Collagen homeostasis and metabolism. Adv Exp Med Biol, 2016. 920: p. 11-25.
    9. Nourissat G, Berenbaum F, and Duprez D. Tendon injury: from biology to tendon repair. Nat Rev Rheumatol, 2015. 11(4): p. 223-33.
    10. Manninen M, Karjalainen T, Maatta J, et al. Epidemiology of flexor tendon injuries of the hand in a northern finnish population. Scand J Surg, 2017. 106(3): p. 278-282.
    11. Ho JO, Sawadkar P, and Mudera V. A review on the use of cell therapy in the treatment of tendon disease and injuries. J Tissue Eng, 2014. 5: p. 2041731414549678-2041731414549678.
    12. Docheva D, Müller SA, Majewski M, et al. Biologics for tendon repair. Adv Drug Deliv Rev, 2015. 84: p. 222-239.
    13. Liu C-F, Aschbacher-Smith L, Barthelery NJ, et al. What we should know before using tissue engineering techniques to repair injured tendons: a developmental biology perspective. Tissue Eng Part B Rev, 2011. 17(3): p. 165-176.
    14. Lin TW, Cardenas L, and Soslowsky LJ. Biomechanics of tendon injury and repair. J Biomech, 2004. 37(6): p. 865-77.
    15. Voleti PB, Buckley MR, and Soslowsky LJ. Tendon healing: repair and regeneration. Annu Rev Biomed Eng, 2012. 14: p. 47-71.
    16. Favata M, Beredjiklian PK, Zgonis MH, et al. Regenerative properties of fetal sheep tendon are not adversely affected by transplantation into an adult environment. J Orthop Res, 2006. 24(11): p. 2124-32.
    17. Lui PPY. Stem cell technology for tendon regeneration: current status, challenges, and future research directions. Stem Cells Cloning, 2015. 8: p. 163-174.
    18. Huang D, Balian G, and Chhabra AB. Tendon tissue engineering and gene transfer: the future of surgical treatment. J Hand Surg Am, 2006. 31(5): p. 693-704.
    19. Hoggatt J and Scadden DT. The stem cell niche: tissue physiology at a single cell level. J Clin Invest, 2012. 122(9): p. 3029-34.
    20. Biehl JK and Russell B. Introduction to stem cell therapy. J Cardiovasc Nurs, 2009. 24(2): p. 98-105.
    21. Krampera M, Franchini M, Pizzolo G, et al. Mesenchymal stem cells: from biology to clinical use. Blood Transfus, 2007. 5(3): p. 120-129.
    22. Young M. Stem cell applications in tendon disorders: a clinical perspective. Stem Cells Int, 2012. 2012: p. 637836-637836.
    23. Bi Y, Ehirchiou D, Kilts TM, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med, 2007. 13: p. 1219.
    24. Zhang J and Wang JHC. Characterization of differential properties of rabbit tendon stem cells and tenocytes. BMC Musculoskelet Disord, 2010. 11: p. 10-10.
    25. Kohler J, Popov C, Klotz B, et al. Uncovering the cellular and molecular changes in tendon stem/progenitor cells attributed to tendon aging and degeneration. Aging Cell, 2013. 12(6): p. 988-999.
    26. Chen L, Liu JP, Tang KL, et al. Tendon derived stem cells promote platelet-rich plasma healing in collagenase-induced rat achilles tendinopathy. Cell Physiol Biochem, 2014. 34(6): p. 2153-68.
    27. Zhou Z, Akinbiyi T, Xu L, et al. Tendon-derived stem/progenitor cell aging: defective self-renewal and altered fate. Aging Cell, 2010. 9(5): p. 911-915.
    28. Rui YF, Lui PPY, Wong YM, et al. Altered fate of tendon-derived stem cells isolated from a failed tendon-healing animal model of tendinopathy. Stem Cells Dev, 2013. 22(7): p. 1076-1085.
    29. Gaut L and Duprez D. Tendon development and diseases. Wiley Interdiscip Rev Dev Biol, 2016. 5(1): p. 5-23.
    30. Chen J, Zhang E, Zhang W, et al. Fos promotes early stage teno-lineage differentiation of tendon stem/progenitor cells in tendon. Stem Cells Transl Med, 2017. 6(11): p. 2009-2019.
    31. Liu Y, Suen CW, Zhang JF, et al. Current concepts on tenogenic differentiation and clinical applications. J Orthop Translat, 2017. 9: p. 28-42.
    32. Schweitzer R, Chyung JH, Murtaugh LC, et al. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development, 2001. 128(19): p. 3855-3866.
    33. Mendias CL, Gumucio JP, Bakhurin KI, et al. Physiological loading of tendons induces scleraxis expression in epitenon fibroblasts. J Orthop Res, 2012. 30(4): p. 606-612.
    34. Shukunami C, Takimoto A, Nishizaki Y, et al. Scleraxis is a transcriptional activator that regulates the expression of Tenomodulin, a marker of mature tenocytes and ligamentocytes. Sci Rep, 2018. 8(1): p. 3155.
    35. Murchison ND, Price BA, Conner DA, et al. Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development, 2007. 134(14): p. 2697-2708.
    36. Lejard V, Brideau G, Blais F, et al. Scleraxis and NFATc regulate the expression of the pro-alpha1(I) collagen gene in tendon fibroblasts. J Biol Chem, 2007. 282(24): p. 17665-75.
    37. Shukunami C, Yoshimoto Y, Takimoto A, et al. Molecular characterization and function of tenomodulin, a marker of tendons and ligaments that integrate musculoskeletal components. Jpn Dent Sci Rev, 2016. 52(4): p. 84-92.
    38. Qi J, Dmochowski JM, Banes AN, et al. Differential expression and cellular localization of novel isoforms of the tendon biomarker tenomodulin. J Appl Physiol (1985), 2012. 113(6): p. 861-71.
    39. Dex S, Lin D, Shukunami C, et al. Tenogenic modulating insider factor: Systematic assessment on the functions of tenomodulin gene. Gene, 2016. 587(1): p. 1-17.
    40. Oshima Y, Sato K, Tashiro F, et al. Anti-angiogenic action of the C-terminal domain of tenomodulin that shares homology with chondromodulin-I. J Cell Sci, 2004. 117(13): p. 2731-2744.
    41. Alberton P, Dex S, Popov C, et al. Loss of tenomodulin results in reduced self-renewal and augmented senescence of tendon stem/progenitor cells. Stem Cells Dev, 2015. 24(5): p. 597-609.
    42. Docheva D, Hunziker EB, Fässler R, et al. Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Mol Cell Biol, 2005. 25(2): p. 699-705.
    43. Liu H, Zhang C, Zhu S, et al. Mohawk promotes the tenogenesis of mesenchymal stem cells through activation of the TGFbeta signaling pathway. Stem Cells, 2015. 33(2): p. 443-55.
    44. Guerquin MJ, Charvet B, Nourissat G, et al. Transcription factor EGR1 directs tendon differentiation and promotes tendon repair. J Clin Invest, 2013. 123(8): p. 3564-76.
    45. Zhang YJ, Chen X, Li G, et al. Concise review: Stem cell fate guided by bioactive molecules for tendon regeneration. Stem Cells Transl Med, 2018. 7(5): p. 404-414.
    46. Shojaee A and Parham A. Strategies of tenogenic differentiation of equine stem cells for tendon repair: current status and challenges. Stem Cell Res Ther, 2019. 10(1): p. 181-181.
    47. 羅方妤(2017)。細胞形狀調控肌腱分化。國立成功大學細胞生物與解剖學研究所碩士論文,台南市。取自https://hdl.handle.net/11296/4r96g8。
    48. von Erlach TC, Bertazzo S, Wozniak MA, et al. Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate. Nat Mater, 2018. 17(3): p. 237-242.
    49. Lehnert D, Wehrle-Haller B, David C, et al. Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion. J Cell Sci, 2004. 117(Pt 1): p. 41-52.
    50. Théry M. Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci, 2010. 123(24): p. 4201-4213.
    51. Kilian KA, Bugarija B, Lahn BT, et al. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A, 2010. 107(11): p. 4872-7.
    52. Naumanen P, Lappalainen P, and Hotulainen P. Mechanisms of actin stress fibre assembly. J Microsc, 2008. 231(3): p. 446-54.
    53. Livne A and Geiger B. The inner workings of stress fibers − from contractile machinery to focal adhesions and back. J Cell Sci, 2016. 129(7): p. 1293-1304.
    54. Burridge K and Guilluy C. Focal adhesions, stress fibers and mechanical tension. Exp Cell Res, 2016. 343(1): p. 14-20.
    55. Bar-Ziv R, Tlusty T, Moses E, et al. Pearling in cells: a clue to understanding cell shape. Proc Natl Acad Sci U S A, 1999. 96(18): p. 10140-10145.
    56. Sit S-T and Manser E. Rho GTPases and their role in organizing the actin cytoskeleton. J Cell Sci, 2011. 124(5): p. 679-683.
    57. Maharam E, Yaport M, Villanueva NL, et al. Rho/Rock signal transduction pathway is required for MSC tenogenic differentiation. Bone Res, 2015. 3: p. 15015.
    58. Arnold TR, Stephenson RE, and Miller AL. Rho GTPases and actomyosin: Partners in regulating epithelial cell-cell junction structure and function. Exp Cell Res, 2017. 358(1): p. 20-30.
    59. Vicente-Manzanares M, Ma X, Adelstein RS, et al. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol, 2009. 10(11): p. 778-790.
    60. Martino F, Perestrelo AR, Vinarský V, et al. Cellular mechanotransduction: From tension to function. Front Physiol, 2018. 9(824).
    61. Paluch EK, Nelson CM, Biais N, et al. Mechanotransduction: use the force(s). BMC Biol, 2015. 13: p. 47-47.
    62. Halder G and Johnson RL. Hippo signaling: growth control and beyond. Development, 2011. 138(1): p. 9-22.
    63. Dobrokhotov O, Samsonov M, Sokabe M, et al. Mechanoregulation and pathology of YAP/TAZ via Hippo and non-Hippo mechanisms. Clin Transl Med, 2018. 7(1): p. 23-23.
    64. Dupont S, Morsut L, Aragona M, et al. Role of YAP/TAZ in mechanotransduction. Nature, 2011. 474(7350): p. 179-83.
    65. Alarcón C, Zaromytidou A-I, Xi Q, et al. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell, 2009. 139(4): p. 757-769.
    66. Varelas X, Sakuma R, Samavarchi-Tehrani P, et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol, 2008. 10: p. 837.
    67. Hata A and Chen YG. TGF-beta Signaling from Receptors to Smads. Cold Spring Harb Perspect Biol, 2016. 8(9).
    68. Heldin CH and Moustakas A. Signaling receptors for TGF-beta family members. Cold Spring Harb Perspect Biol, 2016. 8(8).
    69. Yan X, Liu Z, and Chen Y. Regulation of TGF-β signaling by Smad7. Acta Biochim Biophys Sin (Shanghai), 2009. 41(4): p. 263-272.
    70. Havis E, Bonnin MA, Olivera-Martinez I, et al. Transcriptomic analysis of mouse limb tendon cells during development. Development, 2014. 141(19): p. 3683-96.
    71. Barsby T and Guest D. Transforming growth factor beta3 promotes tendon differentiation of equine embryo-derived stem cells. Tissue Eng Part A, 2013. 19(19-20): p. 2156-65.
    72. Berthet E, Chen C, Butcher K, et al. Smad3 binds Scleraxis and Mohawk and regulates tendon matrix organization. J Orthop Res, 2013. 31(9): p. 1475-1483.
    73. Park A, Hogan MV, Kesturu GS, et al. Adipose-derived mesenchymal stem cells treated with growth differentiation factor-5 express tendon-specific markers. Tissue Eng Part A, 2010. 16(9): p. 2941-51.
    74. Shen H, Gelberman RH, Silva MJ, et al. BMP12 induces tenogenic differentiation of adipose-derived stromal cells. PLoS One, 2013. 8(10): p. e77613.
    75. Al-Tubuly AA. SDS-PAGE and western blotting. Methods Mol Med, 2000. 40: p. 391-405.
    76. Lui PP. Markers for the identification of tendon-derived stem cells in vitro and tendon stem cells in situ - update and future development. Stem Cell Res Ther, 2015. 6: p. 106.
    77. Juneja SC, Schwarz EM, O'Keefe RJ, et al. Cellular and molecular factors in flexor tendon repair and adhesions: a histological and gene expression analysis. Connect Tissue Res, 2013. 54(3): p. 218-226.
    78. Roth SP, Schubert S, Scheibe P, et al. Growth factor-mediated tenogenic induction of multipotent mesenchymal stromal cells is altered by the microenvironment of tendon matrix. Cell Transplant, 2018. 27(10): p. 1434-1450.
    79. Ben Mimoun S and Mauviel A. Molecular mechanisms underlying TGF-ss/Hippo signaling crosstalks - Role of baso-apical epithelial cell polarity. Int J Biochem Cell Biol, 2018. 98: p. 75-81.
    80. Szeto SG, Narimatsu M, Lu M, et al. YAP/TAZ are mechanoregulators of TGF-beta-Smad signaling and renal fibrogenesis. J Am Soc Nephrol, 2016. 27(10): p. 3117-3128.
    81. Gibault F, Bailly F, Corvaisier M, et al. Molecular features of the YAP inhibitor Verteporfin: synthesis of Hexasubstituted Dipyrrins as potential inhibitors of YAP/TAZ, the downstream effectors of the Hippo pathway. ChemMedChem, 2017. 12(12): p. 954-961.
    82. Chen YA, Lu CY, Cheng TY, et al. WW Domain-Containing proteins YAP and TAZ in the Hippo pathway as key regulators in stemness maintenance, tissue homeostasis, and tumorigenesis. Front Oncol, 2019. 9: p. 60.
    83. Halder SK, Beauchamp RD, and Datta PK. A specific inhibitor of TGF-beta receptor kinase, SB-431542, as a potent antitumor agent for human cancers. Neoplasia, 2005. 7(5): p. 509-521.
    84. Inman GJ, Nicolás FJ, Callahan JF, et al. SB-431542 Is a potent and specific inhibitor of transforming growth factor-β superfamily type I Activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol, 2002. 62(1): p. 65-74.
    85. Li P, Gao S, Zhou M, et al. Effects of different mechanical stretch conditions on differentiation of rat tendon stem cells. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2017. 31(4): p. 481-488.
    86. Zhang J and Wang JH. Mechanobiological response of tendon stem cells: implications of tendon homeostasis and pathogenesis of tendinopathy. J Orthop Res, 2010. 28(5): p. 639-43.
    87. Grannas K, Arngarden L, Lonn P, et al. Crosstalk between Hippo and TGFbeta: Subcellular localization of YAP/TAZ/Smad complexes. J Mol Biol, 2015. 427(21): p. 3407-15.
    88. Maeda T, Sakabe T, Sunaga A, et al. Conversion of mechanical force into TGF-β-mediated biochemical signals. Curr Biol, 2011. 21(11): p. 933-941.
    89. Li R, Liang L, Dou Y, et al. Mechanical stretch inhibits mesenchymal stem cell adipogenic differentiation through TGFbeta1/Smad2 signaling. J Biomech, 2015. 48(13): p. 3665-71.
    90. Kapacee Z, Yeung CY, Lu Y, et al. Synthesis of embryonic tendon-like tissue by human marrow stromal/mesenchymal stem cells requires a three-dimensional environment and transforming growth factor beta3. Matrix Biol, 2010. 29(8): p. 668-77.
    91. Subramanian A and Schilling TF. Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix. Development, 2015. 142(24): p. 4191-4204.
    92. Yao F, Xiao Z, Sun Y, et al. SKP2 and OTUD1 govern non-proteolytic ubiquitination of YAP that promotes YAP nuclear localization and activity. Cell stress, 2018. 2(9): p. 233-235.
    93. Johnson C, Crowther S, Stafford MJ, et al. Bioinformatic and experimental survey of 14-3-3-binding sites. Biochem J, 2010. 427(1): p. 69-78.
    94. Shanzer M, Adler J, Ricardo-Lax I, et al. The nonreceptor tyrosine kinase c-Src attenuates SCF(β-TrCP) E3-ligase activity abrogating Taz proteasomal degradation. Proc Natl Acad Sci U S A, 2017. 114(7): p. 1678-1683.
    95. Chen SJ, Yuan W, Mori Y, et al. Stimulation of type I collagen transcription in human skin fibroblasts by TGF-beta: involvement of Smad 3. J Invest Dermatol, 1999. 112(1): p. 49-57.
    96. Meng XM, Huang XR, Chung ACK, et al. Smad2 protects against TGF-beta/Smad3-mediated renal fibrosis. J Am Soc Nephrol, 2010. 21(9): p. 1477-1487.
    97. Walton KL, Johnson KE, and Harrison CA. Targeting TGF-β mediated SMAD signaling for the prevention of fibrosis. Front Pharmacol, 2017. 8: p. 461-461.

    無法下載圖示 校內:2024-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE