簡易檢索 / 詳目顯示

研究生: 蔡承樺
Tsai, Cheng-Hua
論文名稱: 不同地區化工產品需求的關聯分析
An Association Analysis on the Chemical Products for Various Regions
指導教授: 翁慈宗
Wong, Tzu-Tsung
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 78
中文關鍵詞: 關聯分析化工產品FP-growth 演算法行銷策略
外文關鍵詞: Association analysis, chemical product, FP-growth algorithm, marketing strategies
相關次數: 點閱:104下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的持續進步,行銷策略也在不斷演變。過往企業的行銷方式如果沒有與時俱進,將難以推動客戶購買更多樣化的產品。本篇研究旨在制定可行的行銷策略,利用化工業的銷售數據挖掘潛在的產品組合,並主動向客戶推廣,藉此增加產品銷售的種類,從而打破舊有行銷模式所造成的行銷範圍侷限。
    而在本篇研究之中,依照產品類別選取三大類作為研究的對象,並將各大類中對應於單一客戶的出貨資料聚合形成一筆交易,再進一步將三大類的交易資料,逐一套入 FP-growth 演算法,以發掘在四個層級(大陸、地區、國家、產品)之中,前十筆具有最高提升度的關聯規則。透過本篇依照產品類別探勘關聯規則,不僅能決定產品組合內部的產品種類及種類數,促使產品組合精準地符合各地客戶的需求,更能基於多種關聯規則獲取商業洞見,從中找到客戶下單產品的原因,以此作為制定行銷策略的參考依據。

    With the ongoing advancement of technology, marketing strategies are continually evolving. Traditional marketing methods that don’t align with contemporary developments may encounter significant challenges in motivating customers to diversify their product purchases. This study aims to develop practical marketing strategies by discovering association rules from the sales data of a chemical industry. The rules can reveal potential product combinations for promoting them to customers proactively, and new marketing models can be developed to enhance the diversity of products sold.
    In this study, the chemical products are divided into three categories, and the orders corresponding to a customer for each category are aggregated to form a transaction. The FP-growth algorithm is then applied on the transactions for each category to discover the top ten association rules with the largest lifts for four levels: continents, regions, countries, and products. The rules for each category in each level provide meaningful business insights to clarify the underlying factors behind customer purchasing decisions and serve as valuable references for developing marketing strategies.

    中文摘要 I Abstract II 誌謝 V 目錄 VII 表目錄 X 圖目錄 XII 第一章 緒論 1 1-1.研究背景 1 1-2.研究動機 2 1-3.研究目的 3 1-4.研究架構 3 第二章 文獻探討 5 2-1.台灣化工產業之背景概述 5 2-1.1 台灣化工產業之簡介 5 2-1.2 台灣化工產業之特性 7 2-1.3 台灣石化產業之挑戰 7 2-2.化工產業之行銷模式介紹 9 2-2.1 化工產業交易方式 9 2-2.2 化工產業之訂價 10 2-2.3 化工產業之議價 11 2-2.4 化工產業行銷之演進 12 2-3.關聯規則 13 2-3.1 有趣度測度 15 2-3.2 Apriori 演算法 17 2-3.3 FP-growth 演算法 19 2-4.本章小結 20 第三章 研究方法 22 3-1.研究流程 22 3-2.資料預處理 24 3-3.FP-growth 演算法 27 3-4.關聯規則之測度與指標 30 第四章 實證分析 33 4-1.資料預處理 33 4-2.光固化材料資料集 37 4-3.不飽和樹脂資料集 43 4-4.外購轉售資料集 47 4-5.綜合分析 52 第五章 結論與建議 55 5-1.研究發現 55 5-2.行銷策略之建議 56 5-3.實驗限制及未來研究之建議 57 參考文獻 58 附錄一 63

    中華民國化學工業責任照顧協會(2017)。化學工業創造生活的萬花筒。取自:https://www.trca.org.tw/。
    李俊賢(2018)。有害物質與零件之關聯分析。國立成功大學工業與資訊管理學系在職專班碩士論文。
    柯子騏(2019)。化工原料業三角貿易商之經營模式 ─ 以 B 公司為例。輔仁大學科技管理學程碩士在職專班碩士論文。
    高長(2014)。中國大陸與韓澳簽署 FTA 對我影響評析。展望與探索,12(12),11-16。
    許仲毅(2015)。組織生命週期、組織結構變革與策略變革對組織效能影響之研究-以某石油公司為例。國立中正大學企業管理研究所碩士論文。
    郭肇中、劉榮昌(2017)。石化研發的瓶頸 ─ 試量產研發。科學發展,531,40-41。
    陳兆裕(2016)。台灣石化產業對經濟的貢獻。科學發展,525,48-54。
    曾繁銘、范振誠(2017)。石化產業環境變個的對策 ─ 產品高值化。科學發展,531,8-9。
    黃國維、高郁美(2017)。石化求生路。科學發展,531,51-56。
    勤業眾信聯合會計師事務所(2019)。化工企業的數位商機:創造永續價值。勤業眾信聯合會計師事務所市調報告。取自:https://www2.deloitte.com/tw/tc/pages/energy-and-resources/articles/digital-transform-chemical.html
    廖麗芳(2018)。產業獲利能力之比較分析。國立中興大學高階經理人碩士在職專班碩士論文。
    劉松鑫(2014)。化工廠輪班制度最適化探討。國立清華大學工業工程與工程管理學系碩士論文。
    歐陽超(2019)。運用非異常稀有關聯規則探勘於腦血管檢查資料集中勘擷取生產規則。國立臺灣科技大學博士論文。
    蕭文峰(2017)。企業評價分析 ─ 以化工產業為例。國立中興大學高階經理人碩士在職專班碩士論文。
    Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, 207-216.
    Batsakis, G., Theoharakis, V., Azar, G., Singh, S., & Singh, R. (2019). The contingent effect of product relatedness on B2B firms pricing strategy. Industrial Marketing Management, 83, 266-274.
    Blackburn, R., Lurz, K., Priese, B., Göb, R., & Darkow, I. L. (2015). A predictive analytics approach for demand forecasting in the process industry. International Transactions in Operational Research, 22(3), 407-428.
    Chandran, S. & Kasat, R. (2019). Aligning data analytics and strategy in the chemical industry. Aligning Business Strategies and Analytics: Bridging Between Theory and Practice, 195-208.
    Favre, E., Marchal-Heusler, L., & Kind, M. (2002). Chemical product engineering:Research and educational challenges. Chemical Engineering Research and Design, 80(1), 65–74.
    Forman, H. & Hunt, J. M. (2005). Managing the influence of internal and external determinants on international industrial pricing strategies. Industrial Marketing Management, 34(2), 133-146.
    Geng, L. & Hamilton, H. J. (2006). Interestingness measures for data mining: A survey. ACM Computing Surveys, 38(3), 1-32.
    Gómez-Bombarelli, R. & Aspuru-Guzik, A. (2020). Handbook of Materials Modeling: Methods: Theory and Modeling. Springer.
    Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery, 8, 53-87.
    Ilardi, E. A., Vitaku, E., & Njardarson, J. T. (2014). Data-mining for sulfur and fluorine: An evaluation of pharmaceuticals to reveal opportunities for drug design and discovery: Miniperspective. Journal of Medicinal Memistry, 57(7), 2832-2842.
    Jakobi. (2002). Marketing and Sales in the Chemistry Industry. 2th Edition. Wiley-VCH.
    Kaur, M. & Kang, S. (2016). Market Basket Analysis: Identify the changing trends of market data using association rule mining. Procedia Computer Science, 85, 78-85.
    Koehn, R. (2018). The digitalization of marketing and sales in the chemical B2B sector. Journal of Business Chemistry, 15(2).
    Rababah, K., Mohd, H., & Ibrahim, H. (2011). Customer relationship management (CRM) processes from theory to practice: The pre-implementation plan of CRM system. International Journal of e-Education, e-Business, e-Management and e-Learning, 1(1), 22-27.
    Sahar, S. (1999). Interestingness via what is not interesting. In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 332-336.
    Seider, W. D., Soemantri, W., Seader, J. D., & Lewin, D. R. (2009). Perspectives on chemical product and process design. Computers & Chemical Engineering, 33, 930–935.
    Smith, B. V. & Ierapepritou, M. G. (2010). Integrative chemical product design strategies: Reflecting industry trends and challenges. Computers & Chemical Engineering, 34(6), 857-865.
    Stringer, B. (2013). Big Data and the Chemical Industry. Retrieved from https://www.icis.com/resources/news/2013/12/13/9735874/big-data-and-the-chemical-industry/
    Tan, P. N. & Kumar, V. (2000). Interestingness measures for association patterns: A perspective. Computer Science & Engineering Technical Reports.
    Wang, J., Li, H., Huang, J., & Su, C. (2016). Association rules mining based analysis of consequential alarm sequences in chemical processes. Journal of Loss Prevention in the Process Industries, 41, 178-185.
    Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2013). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97-107.
    Zhang, C. & Zhang, S. (Eds.). (2002). Association Rule Mining: Models and Algorithms. Springer.
    Zhang, G., Chen, Y., & Fu, C. (2006). A study on the relation between enterprise competitive advantage and CRM based on data mining. International Technology and Innovation Conference, 1710-1714.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE