簡易檢索 / 詳目顯示

研究生: 楊佳霖
Yang, Chia-Lin
論文名稱: 探討Twist, Snail, Slug和E-cadherin於癌化過程及葡萄糖代謝在子宮頸癌扮演的角色
Study the role of Twist, Snail, Slug and E-cadherin in tumorigenesis and glucose metabolism on cervical cancer cells
指導教授: 張文粲
Chang, Wen-Tsan
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 126
中文關鍵詞: 瓦氏效應表皮細胞間質化轉錄因子表皮鈣黏蛋白
外文關鍵詞: Warburg effect, epithelial-mesenchymal transition, transcription factor, E-cadherin
相關次數: 點閱:222下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 瓦式效應(Warburg effect)證實了腫瘤細胞即使在氧氣充足的環境之下,仍會提高糖解作用的效率。根據這個學說,細胞的代謝似乎受到腫瘤的癌化情形所影響,在實驗室之前學長的研究中,當HeLa細胞穩定抑制表現六碳糖激酶I型(Hexokinase I)和檸檬酸合成酶(Citrate synthase)後細胞皆有偏向間質細胞的型態變化,因此本實驗想要探討在子宮頸癌調控表皮細胞間質化(epithelial-mesenchymal transition,EMT)相關的基因表現,像Cdh1的沉默表現、Twist,Snail,和Slug過度表現,藉此模擬腫瘤細胞進行表皮細胞間質化的狀況並且研究其代謝變化。因此本實驗首先在HeLa細胞分別建立穩定過度表現Snail,Twist和Slug的細胞株及穩定沉默Cdh1的細胞株,先觀察這些細胞株的癌化情形,發現雖然在HeLa細胞穩定表現這些表皮細胞間質化的相關蛋白質,在生長方面沒有太明顯的影響,但在細胞爬行及細胞群落的形成能力皆有很明顯的提升。在表皮細胞間質化的標記蛋白(EMT marker)表現中發現Twist和Slug的穩定表現其表皮細胞間質化的標記蛋白大部分也都有跟著表現,但Snail的穩定過度表現卻造成CDH1的表現提升,Cdh1的沉默表現卻沒有太明顯的變化。接著分析這些細胞株的代謝變化,首先在處理低濃度的葡萄糖(0,1mg/ml)的情況之下,發現Cdh1沉默表現的細胞株表現敏感,而過度表現Twist,Snail和Slug的細胞株卻比野生型(wild-type)的HeLa細胞還不敏感,而在葡萄糖攝取能力的實驗裡發現這四株細胞株皆有上升的現象,接著分析糖解作用的相關酵素發現過度表現Twist和Snail會促進六碳糖激酶I型表現量上升六碳糖激酶II型表現量下降,而過度表現Slug的細胞株六碳糖激酶II型表現量上升,有趣的是過度表現Snail及Slug細胞的檸檬酸合成酶的表現量皆有明顯的提升,但CDH1的抑制表現發現糖類代謝相關酵素卻都沒有太大的影響,本研究發現,過度表現表皮細胞間質化相關的轉錄因子(transcription factors)確實會讓細胞的糖類代謝產生變化,但詳細的原因還不得而知,有研究指出,低氧氣濃度所誘導表現的HIF-1會和HIF-1結合形成轉錄因子去改變細胞對糖類的需求及細胞生長的能力,因此未來可以朝著HIF-1的變化來研究是否這三個轉錄因子也調控了類似的途徑。

    Most cancer cells were observed to maintain higher glycolytic rates than those of normal tissues, even under oxygen-sufficient conditions, so-called “Warburg effect”. According to this theory, the change in metabolism may be due to the tumorigenesis of cancer cells. According to previous studies in our laboratory, when stable knockdown Hexokinase I or Citrate synthase in HeLa cell altered it’s morphology to a mesenchymal-like phenotype. In this study, we show that, manipulating the expression of EMT markers, such as Cdh1, Twist, Snail, and Slug in cervical cancer altered its tumorigenesis and metabolic changes. To study the expression of EMT in tumorigenesis, we successfully established stable HeLa cell lines either over-expressing Snail, Twist and Slug or silencing Cdh1. After observing various characteristics in these stable cell lines, their abilities for migration and colony formation were founded to increase significantly while growth rate changes were hardly detectable. Moreover, most EMT markers have been founded to express only in over-expressing Twist and Slug stable cells while silencing Cdh1 stable cells exhibited no obvious changes. Stable Snail overexpression cell lines, up-regulated the expression of Cdh1. Then, the stable cell lines were treated with low glucose concentrations (0, 1 mg/ml) for analyzing changes in metabolism, shown that knock-down Cdh1 became more sensitive than the wild-type HeLa cell lines. Conversely, over-expressing Twist , Snail and Slug displayed less sensitivity. All of cell lines have better glucose uptake ability then wild-type HeLa cell lines . Next, as the result of examining activities of key enzymes in glycolysis, Hexokinase I expression increased while Hexokinase II decreased in stables over-expressing Twist and Snail. And Hexokinase II increased in stables over-expressing Slug .Interestingly , Citrate synthase’s expression increased in stables over-expression Snail and Slug cell lines. When Cdh1 was knock-downed, no major effect on the activities of Hexokinase I and II was observed. In these experience, we found that, cell’s glucose metabolism will change when we over-expressed EMT-related transcription factors, but we still don’t know the reason . In previous study, when cells treat in hypoxia situation, cell’s HIF-1 will be induced and bind with HIF-1. Then ,this complex will act as transcription factor to modulate cell’s glucose requirement and cell’s growth rate .Hence , we can take more research in HIF-1 pathway whether these three EMT-related transcription factors involve or not in the future .

    中文摘要 3 Abstract 5 誌謝 7 第一章 緒論 13 1-1 腫瘤細胞與瓦氏效應 (Warburg effect) 13 1-2 腫瘤細胞與表皮細胞間質化(Epithelial-mesenchymal transition,簡稱EMT) 14 1-2-1 轉錄因子Twist 16 1-2-2 轉錄因子Snail家族 17 1-3 核醣核酸干擾技術的發現及機制 18 1-4 糖類代謝研究與癌症治療 19 1-5 研究動機 20 第二章 實驗材料與方法 21 2-1. 實驗材料 21 2-2. 實驗方法 36 第三章 實驗結果 54 3-1 分析各種不同細胞株之表皮細胞間質化相關蛋白質之內生性表現建立穩定過度表現Twist、Snail以及Slug的HeLa 細胞 54 3-3 分析穩定過度表現Twist之HeLa 細胞在葡萄糖缺乏的環境之下,其生長及細胞群落形成能力分析 55 3-4 分析穩定過度表現Twist之HeLa 細胞對於細胞之葡萄糖攝取(glucose uptake)能力以及葡萄糖轉運體(glucose transproter)表現量是否有影響 56 3-5 觀察穩定過度表現Twist後對於能量代謝相關蛋白質表現之影響 56 3-6 觀察穩定過度表現Twist後對於乳酸及ATP的生成之影響 57 3-7 觀察穩定過度表現Snail後在EMT相關表現蛋白及癌化有什麼影響 57 3-8 分析穩定過度表現Snail細胞在葡萄糖缺乏的環境下,其生長及細胞群落形成能力之變化 58 3-9 分析穩定過度表現Snail之HeLa 細胞對於細胞之葡萄糖攝取能力以及葡萄糖轉運體表現量是否有影響 58 3-10 觀察穩定過度表現Snail後對於能量代謝相關蛋白質表現之影響 59 3-11觀察穩定過度表現Snail後對於乳酸及ATP的生成之影響 59 3-12分析穩定過度表現Slug之HeLa 細胞在EMT相關蛋白表現及癌化轉變 59 3-13 分析穩定過度表現Slug之HeLa 細胞在葡萄糖缺乏的環境之下,其生長及細胞群落形成能力分析 60 3-14 分析穩定過度表現Slug之HeLa 細胞對於細胞之葡萄糖攝取能力以及葡萄糖轉運體表現量是否有影響 60 3-15 觀察穩定過度表現Slug後對於能量代謝相關蛋白質表現之影響 60 3-16觀察穩定過度表現Slug後對於乳酸及ATP的生成之影響 61 3-17利用核醣核酸干擾(RNAi)技術建立穩定抑制E-cadherin之細胞株 61 3-18 分析穩定抑制表現E-cadherin之HeLa 細胞在EMT相關蛋白表現及癌化轉變 62 3-19 分析穩定抑制E-cadherin表現之HeLa 細胞在葡萄糖缺乏的環境之下,其生長及細胞群落形成能力分析 63 3-20 分析穩定抑制E-cadherin表現之HeLa 細胞對於細胞之葡萄糖攝取能力以及葡萄糖轉運體表現量是否有影響 63 3-21 觀察穩定抑制E-cadherin表現後對於能量代謝相關蛋白質表現之影響 63 3-22觀察穩定抑制E-cadherin的表現後對於lactate及ATP的生成之影響 64 第四章 討論 65 第五章 參考文獻 71 第六章 結果圖表 81 圖一、各種不同的EMT 相關蛋白質在不同細胞株之表現量以及挑選穩定過度表現Twist表現細胞株之細胞群落型態 81 圖二、分析穩定過度表現Twist後,HeLa細胞之生長速度 83 圖三、利用Boyden chamber分析穩定過度表現Twist後,細胞的爬行能力 84 圖四、將過度表現Twist之細胞培養於不同濃度葡萄糖(0、1、4.5 mg/ml)之培養基中,利用MTT assay分析以及細胞群落形成能力分析觀察細胞之生長情形 85 圖五、分析穩定過度表現Twist後,HeLa細胞之葡萄糖攝取能力並且以西方墨點法分析葡萄糖轉運體1以及葡萄糖轉運體3之表現量 86 圖六、以西方墨點法分析穩定過度表現Twist之HeLa細胞其內生性糖解作用、檸檬酸循環及p53等相關蛋白質表現量 87 圖七 、分析過度表現Twist後,HeLa細胞之LDH生成情形 88 圖八、分析過度表現Twist的細胞ATP的生成量 89 圖九、挑選穩定過度表現Snail表現細胞株之細胞群落型態 90 圖十、分析穩定過度表現Snail後,HeLa細胞之生長速度 91 圖十一、利用Boyden chamber分析穩定過度表現Snail後,細胞的爬行能力 92 圖十二 、將過度表現Snail之細胞培養於不同濃度葡萄糖(0、1、4.5 mg/ml)之培養基中,利用照相分析以及細胞群落形成能力分析觀察細胞之生長情形 94 圖十三 、分析穩定過度表現Snail後,HeLa細胞之葡萄糖攝取能力並且以西方墨點法分析葡萄糖轉運體1以及葡萄糖轉運體3之表現量 95 圖十四 、以西方墨點法分析穩定過度表現Snail之HeLa細胞其內生性糖解作用、檸檬酸循環及p53等相關蛋白質表現量 96 圖十五 、分析過度表現Snail 後HeLa之細胞LDH生成情形 97 圖十六、分析過度表現Snail的細胞ATP的生成量 99 圖十七、挑選穩定過度表現Slug表現細胞株之細胞群落型態 100 圖十八、分析穩定過度表現Slug後,HeLa細胞之生長速度 101 圖十九、利用Boyden chamber分析穩定過度表現Slug後,細胞的爬行能力 102 圖二十、將過度表現Slug之細胞培養於不同濃度葡萄糖(0、1、4.5 mg/ml)之培養基中,利用照相分析以及細胞群落形成能力分析觀察細胞之生長情形 103 圖二十一、分析穩定過度表現Slug後,HeLa細胞之葡萄糖攝取能力並且以西方墨點法分析葡萄糖轉運體1以及葡萄糖轉運體3之表現量 104 圖二十二 、以西方墨點法分析穩定過度表現Slug之HeLa細胞其內生性糖解作用、檸檬酸循環及p53等相關蛋白質表現量 105 圖二十三、分析過度表現Slug後,HeLa細胞之LDH生成情形 106 圖二十四、分析過度表現Slug的細胞ATP的生成量 107 圖二十五 、小片段核醣核酸(siRNA)表現系統 108 圖二十六 、冷光表現載體系統及利用siCDH1標的序列的冷光報導基因分析小片段核醣核酸(siRNA)之抑制效果 109 圖二十七 、綠螢光表現載體及綠螢光照相分析結果與西方墨點法分析小片段核醣核酸(siRNA)之抑制效果 110 圖二十八 、冷光表現載體系統及利用shCDH1標的序列的冷光報導基因分析小片段核醣核酸(siRNA)之抑制效果 111 圖二十九 、綠螢光表現載體及綠螢光照相分析結果與西方墨點法分析小片段核醣核酸(shRNA)之抑制效果 112 圖三十、挑選穩定抑制E-cadherin表現細胞株之細胞群落型態及挑選出來細胞株之型態及EMT相關蛋白表現 113 圖三十一、分析穩定抑制表現E-cadherin後,HeLa細胞之生長速度 115 圖三十二、利用Boyden chamber分析穩定抑制CDH1表現後,細胞的爬行能力 115 圖三十三 、將抑制表現E-cadherin之細胞培養於不同濃度葡萄糖(0、1、4.5 mg/ml)之培養基中,利用照相分析以及細胞群落形成能力分析觀察細胞之生長情形 116 圖三十四、分析穩定抑制表現E-cadherin後,HeLa細胞之葡萄糖攝取能力並且以西方墨點法分析葡萄糖轉運體1以及葡萄糖轉運體3之表現量 118 圖三十五 、以西方墨點法分析穩定抑制E-cadherin之HeLa細胞其內生性糖解作用、檸檬酸循環及p53等相關蛋白質表現量 119 圖三十六 、分析過度表現Twist後,HeLa細胞之LDH生成情形 120 圖三十七、分析抑制CDH1表現的細胞ATP的生成量 121 附表 122 表一:HeLa細胞穩定過度表現Twist、Snail和Slug及穩定抑制E-cadherin表現的細胞株實驗結果綜合比較表 122 表二: HeLa細胞穩定過度表現Twist、Snail和Slug及穩定抑制E-cadherin表現的細胞株表皮細胞間質化相關蛋白質的表現比較表 123 表三: HeLa細胞穩定過度表現Twist、Snail和Slug及穩定抑制E-cadherin表現的細胞株糖類代謝相關蛋白質表現比較表 124 表四: HeLa細胞穩定過度表現Twist、Snail和Slug及穩定抑制E-cadherin表現的細胞株葡萄糖轉運體表現比較表 125 作者簡介 126

    Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297.

    Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233.

    Batlle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Baulida, J., and Garcia De Herreros, A. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2, 84-89.

    Becker, K.F., Atkinson, M.J., Reich, U., Becker, I., Nekarda, H., Siewert, J.R., and Hofler, H. (1994). E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res 54, 3845-3852.

    Ben-Yoseph, O., Boxer, P.A., and Ross, B.D. (1994). Oxidative stress in the central nervous system: monitoring the metabolic response using the pentose phosphate pathway. Dev Neurosci 16, 328-336.

    Bernstein, E., Caudy, A.A., Hammond, S.M., and Hannon, G.J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363-366.

    Brown, J. (1962). Effects of 2-deoxyglucose on carbohydrate metablism: review of the literature and studies in the rat. Metabolism: clinical and experimental 11, 1098.

    Cairns, R.A., Harris, I.S., and Mak, T.W. (2011). Regulation of cancer cell metabolism. Nat Rev Cancer 11, 85-95.

    Cano, A., Perez-Moreno, M.A., Rodrigo, I., Locascio, A., Blanco, M.J., del Barrio, M.G., Portillo, F., and Nieto, M.A. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2, 76-83.

    Carl, T.F., Dufton, C., Hanken, J., and Klymkowsky, M.W. (1999). Inhibition of neural crest migration in Xenopus using antisense slug RNA. Dev Biol 213, 101-115.
    Chang, C.-c.L.a.W.-T. Impairment of p53 is required for induction of epithelial-mesenchymal transition by knockdown of the human citrate synthase 國立成功大學生物化學暨分子生物學研究所碩士論文.

    Chang, K.-s.H.a.W.-T. A novel function of human hexokinase I, the first and rate-limiting enzyme of the glycolysis, in tumor metastasis 國立成功大學生物化學暨分子生物研究所碩士論文.

    Chen, Z.F., and Behringer, R.R. (1995). twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev 9, 686-699.

    Cook, L.M., Hurst, D.R., and Welch, D.R. (2011). Metastasis suppressors and the tumor microenvironment. Semin Cancer Biol 21, 113-122.

    DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G., and Thompson, C.B. (2008). The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7, 11-20.

    del Barrio, M.G., and Nieto, M.A. (2002). Overexpression of Snail family members highlights their ability to promote chick neural crest formation. Development 129, 1583-1593.

    Donnenberg, V.S., and Donnenberg, A.D. (2005). Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 45, 872-877.

    Dumont, N., Wilson, M.B., Crawford, Y.G., Reynolds, P.A., Sigaroudinia, M., and Tlsty, T.D. (2008). Sustained induction of epithelial to mesenchymal transition activates DNA methylation of genes silenced in basal-like breast cancers. Proc Natl Acad Sci U S A 105, 14867-14872.

    Dykxhoorn, D.M., Novina, C.D., and Sharp, P.A. (2003). Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4, 457-467.

    El Mjiyad, N., Caro-Maldonado, A., Ramirez-Peinado, S., and Munoz-Pinedo, C. (2011). Sugar-free approaches to cancer cell killing. Oncogene 30, 253-264.

    Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001a). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494-498.

    Elbashir, S.M., Lendeckel, W., and Tuschl, T. (2001b). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15, 188-200.

    Elias, M.C., Tozer, K.R., Silber, J.R., Mikheeva, S., Deng, M., Morrison, R.S., Manning, T.C., Silbergeld, D.L., Glackin, C.A., Reh, T.A., et al. (2005). TWIST is expressed in human gliomas and promotes invasion. Neoplasia 7, 824-837.

    Entz-Werle, N., Stoetzel, C., Berard-Marec, P., Kalifa, C., Brugiere, L., Pacquement, H., Schmitt, C., Tabone, M.D., Gentet, J.C., Quillet, R., et al. (2005). Frequent genomic abnormalities at TWIST in human pediatric osteosarcomas. Int J Cancer 117, 349-355.

    Fantin, V.R., St-Pierre, J., and Leder, P. (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9, 425-434.

    Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.

    Gatenby, R.A., and Gillies, R.J. (2004a). Why do cancers have high aerobic glycolysis? Nature Reviews Cancer 4, 891-899.

    Gatenby, R.A., and Gillies, R.J. (2004b). Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4, 891-899.

    Green, D.R., and Chipuk, J.E. (2006). p53 and metabolism: Inside the TIGAR. Cell 126, 30-32.

    Greenburg, G., and Hay, E.D. (1982). Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol 95, 333-339.

    Guppy, M., Greiner, E., and Brand, K. (1993). The role of the Crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes. Eur J Biochem 212, 95-99.

    Hamilton, A.J., and Baulcombe, D.C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950-952.

    Hemavathy, K., Ashraf, S.I., and Ip, Y.T. (2000). Snail/slug family of repressors: slowly going into the fast lane of development and cancer. Gene 257, 1-12.

    Hoek, K., Rimm, D.L., Williams, K.R., Zhao, H., Ariyan, S., Lin, A., Kluger, H.M., Berger, A.J., Cheng, E., Trombetta, E.S., et al. (2004). Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res 64, 5270-5282.

    Hutvagner, G., McLachlan, J., Pasquinelli, A.E., Balint, E., Tuschl, T., and Zamore, P.D. (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834-838.

    Kim, J.W., and Dang, C.V. (2005). Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 30, 142-150.

    Klarmann, G.J., Hurt, E.M., Mathews, L.A., Zhang, X., Duhagon, M.A., Mistree, T., Thomas, S.B., and Farrar, W.L. (2009). Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clin Exp Metastasis 26, 433-446.

    Knowles, J.R. (1980). Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem 49, 877-919.

    Kroemer, G., and Pouyssegur, J. (2008). Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13, 472-482.

    Kwok, W.K., Ling, M.T., Lee, T.W., Lau, T.C., Zhou, C., Zhang, X., Chua, C.W., Chan, K.W., Chan, F.L., Glackin, C., et al. (2005). Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res 65, 5153-5162.

    LaBonne, C., and Bronner-Fraser, M. (2000). Snail-related transcriptional repressors are required in Xenopus for both the induction of the neural crest and its subsequent migration. Dev Biol 221, 195-205.

    Lee, J.W., Bae, S.H., Jeong, J.W., Kim, S.H., and Kim, K.W. (2004). Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med 36, 1-12.
    Levine, A.J., and Puzio-Kuter, A.M. (2010). The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330, 1340-1344.

    Li, L., Cserjesi, P., and Olson, E.N. (1995). Dermo-1: a novel twist-related bHLH protein expressed in the developing dermis. Dev Biol 172, 280-292.

    Liu, H., Hu, Y., Savaraj, N., Priebe, W., and Lampidis, T. (2001). Hypersensitization of Tumor Cells to Glycolytic Inhibitors. Biochemistry 40, 5542-5547.

    Liu, H., Savaraj, N., Priebe, W., and Lampidis, T. (2002). Hypoxia increases tumor cell sensitivity to glycolytic inhibitors: a strategy for solid tumor therapy (Model C). Biochemical pharmacology 64, 1745-1751.

    Liu, Y. (2004). Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15, 1-12.

    Maestro, R., Dei Tos, A.P., Hamamori, Y., Krasnokutsky, S., Sartorelli, V., Kedes, L., Doglioni, C., Beach, D.H., and Hannon, G.J. (1999). Twist is a potential oncogene that inhibits apoptosis. Genes Dev 13, 2207-2217.

    Maher, J., Krishan, A., and Lampidis, T. (2004). Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic conditions. Cancer chemotherapy and pharmacology 53, 116-122.

    Manzanares, M., Locascio, A., and Nieto, M.A. (2001). The increasing complexity of the Snail gene superfamily in metazoan evolution. Trends Genet 17, 178-181.

    Marjanovic, S., Eriksson, I., and Nelson, B.D. (1990). Expression of a new set of glycolytic isozymes in activated human peripheral lymphocytes. Biochim Biophys Acta 1087, 1-6.

    Maschek, G., Savaraj, N., Priebe, W., Braunschweiger, P., Hamilton, K., Tidmarsh, G., De Young, L., and Lampidis, T. (2004). 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer research 64, 31.
    Mironchik, Y., Winnard, P.T., Jr., Vesuna, F., Kato, Y., Wildes, F., Pathak, A.P., Kominsky, S., Artemov, D., Bhujwalla, Z., Van Diest, P., et al. (2005). Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. Cancer Res 65, 10801-10809.

    Nagafuchi, A., and Takeichi, M. (1988). Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J 7, 3679-3684.

    Napoli, C., Lemieux, C., and Jorgensen, R. (1990). Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell 2, 279-289.

    Newsholme, E.A., Crabtree, B., and Ardawi, M.S. (1985). The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. Biosci Rep 5, 393-400.
    Nieto, M.A., Sargent, M.G., Wilkinson, D.G., and Cooke, J. (1994). Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 264, 835-839.

    Ohuchida, K., Mizumoto, K., Ohhashi, S., Yamaguchi, H., Konomi, H., Nagai, E., Yamaguchi, K., Tsuneyoshi, M., and Tanaka, M. (2007). Twist, a novel oncogene, is upregulated in pancreatic cancer: clinical implication of Twist expression in pancreatic juice. Int J Cancer 120, 1634-1640.

    Onder, T.T., Gupta, P.B., Mani, S.A., Yang, J., Lander, E.S., and Weinberg, R.A. (2008). Loss of E-Cadherin Promotes Metastasis via Multiple Downstream Transcriptional Pathways. Cancer Research 68, 3645-3654.

    Park, J.W., Chun, Y.S., and Kim, M.S. (2004). Hypoxia-inducible factor 1-related diseases and prospective therapeutic tools. J Pharmacol Sci 94, 221-232.

    Peinado, H., Ballestar, E., Esteller, M., and Cano, A. (2004). Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 24, 306-319.

    Pfeiffer, T., Schuster, S., and Bonhoeffer, S. (2001). Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504-507.

    Rich, P.R. (2003). The molecular machinery of Keilin's respiratory chain. Biochem Soc Trans 31, 1095-1105.

    Romano, A.H., and Conway, T. (1996). Evolution of carbohydrate metabolic pathways. Res Microbiol 147, 448-455.

    Rozhin, J., Sameni, M., Ziegler, G., and Sloane, B.F. (1994). Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. Cancer Res 54, 6517-6525.

    Savagner, P., Yamada, K.M., and Thiery, J.P. (1997). The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol 137, 1403-1419.

    Schäfer et al., T.S., M. Selig and P. Schönheit ( 1993). Acetyl-CoA synthetase ( ADP forming) in archaea, a novel enzyme involved in acetate formation and ATP synthesis. Arch Microbiol 159,, pp. 72–83.

    Schlappack, O.K., Zimmermann, A., and Hill, R.P. (1991). Glucose starvation and acidosis: effect on experimental metastatic potential, DNA content and MTX resistance of murine tumour cells. Br J Cancer 64, 663-670.

    Sharifi, N., Kawasaki, B.T., Hurt, E.M., and Farrar, W.L. (2006). Stem cells in prostate cancer: resolving the castrate-resistant conundrum and implications for hormonal therapy. Cancer Biol Ther 5, 901-906.

    Shim, H., Dolde, C., Lewis, B.C., Wu, C.S., Dang, G., Jungmann, R.A., Dalla-Favera, R., and Dang, C.V. (1997). c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A 94, 6658-6663.

    Simpson, P. (1983). Maternal-Zygotic Gene Interactions during Formation of the Dorsoventral Pattern in Drosophila Embryos. Genetics 105, 615-632.

    Singh, D., Banerji, A., Dwarakanath, B., Tripathi, R., Gupta, J., Mathew, T., Ravindranath, T., and Jain, V. (2005). Optimizing cancer radiotherapy with 2-deoxy-D-glucose. Strahlentherapie und Onkologie 181, 507-514.

    Sosic, D., Richardson, J.A., Yu, K., Ornitz, D.M., and Olson, E.N. (2003). Twist regulates cytokine gene expression through a negative feedback loop that represses NF-kappaB activity. Cell 112, 169-180.

    Stern, C.D. (1992). Vertebrate gastrulation. Curr Opin Genet Dev 2, 556-561.

    Stern, C.D., Hatada, Y., Selleck, M.A., and Storey, K.G. (1992). Relationships between mesoderm induction and the embryonic axes in chick and frog embryos. Dev Suppl, 151-156.

    Sutherland, A.P., Zhang, H., Zhang, Y., Michaud, M., Xie, Z., Patti, M.E., Grusby, M.J., and Zhang, W.J. (2009). Zinc finger protein Zbtb20 is essential for postnatal survival and glucose homeostasis. Mol Cell Biol 29, 2804-2815.

    Takeichi, M. (1995). Morphogenetic roles of classic cadherins. Curr Opin Cell Biol 7, 619-627.

    Talks, K.L., Turley, H., Gatter, K.C., Maxwell, P.H., Pugh, C.W., Ratcliffe, P.J., and Harris, A.L. (2000). The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157, 411-421.

    Tang, C., Ang, B.T., and Pervaiz, S. (2007). Cancer stem cell: target for anti-cancer therapy. FASEB J 21, 3777-3785.

    Tepass, U., Truong, K., Godt, D., Ikura, M., and Peifer, M. (2000). Cadherins in embryonic and neural morphogenesis. Nat Rev Mol Cell Biol 1, 91-100.

    Theys, J., Jutten, B., Habets, R., Paesmans, K., Groot, A.J., Lambin, P., Wouters, B.G., Lammering, G., and Vooijs, M. (2011). E-Cadherin loss associated with EMT promotes radioresistance in human tumor cells. Radiother Oncol.
    Thiery, J.P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2, 442-454.

    Thisse, B., el Messal, M., and Perrin-Schmitt, F. (1987). The twist gene: isolation of a Drosophila zygotic gene necessary for the establishment of dorsoventral pattern. Nucleic Acids Res 15, 3439-3453.

    Trelstad, R.L., Hay, E.D., and Revel, J.D. (1967). Cell contact during early morphogenesis in the chick embryo. Dev Biol 16, 78-106.

    Valsesia-Wittmann, S., Magdeleine, M., Dupasquier, S., Garin, E., Jallas, A.C., Combaret, V., Krause, A., Leissner, P., and Puisieux, A. (2004). Oncogenic cooperation between H-Twist and N-Myc overrides failsafe programs in cancer cells. Cancer Cell 6, 625-630.

    van der Krol, A.R., Mur, L.A., de Lange, P., Mol, J.N., and Stuitje, A.R. (1990). Inhibition of flower pigmentation by antisense CHS genes: promoter and minimal sequence requirements for the antisense effect. Plant Mol Biol 14, 457-466.

    Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033.

    Vousden, K.H., and Ryan, K.M. (2009). p53 and metabolism. Nat Rev Cancer 9, 691-700.

    Wallace, D.C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39, 359-407.

    Weindruch, R., Keenan, K., Carney, J., Fernandes, G., Feuers, R., Floyd, R., Halter, J., Ramsey, J., Richardson, A., and Roth, G. (2001). Caloric restriction mimetics. The Journals of Gerontology: Series A 56, 20.

    Weng, W., Sukowati, E.W., and Sheng, G. (2007). On hemangioblasts in chicken. PLoS ONE 2, e1228.

    Wolf, C., Thisse, C., Stoetzel, C., Thisse, B., Gerlinger, P., and Perrin-Schmitt, F. (1991). The M-twist gene of Mus is expressed in subsets of mesodermal cells and is closely related to the Xenopus X-twi and the Drosophila twist genes. Dev Biol 143, 363-373.

    Yang, J., Mani, S.A., Donaher, J.L., Ramaswamy, S., Itzykson, R.A., Come, C., Savagner, P., Gitelman, I., Richardson, A., and Weinberg, R.A. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927-939.

    Yang, J., Mani, S.A., and Weinberg, R.A. (2006). Exploring a new twist on tumor metastasis. Cancer Res 66, 4549-4552.

    Yang, M.H., Chen, C.L., Chau, G.Y., Chiou, S.H., Su, C.W., Chou, T.Y., Peng, W.L., and Wu, J.C. (2009). Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma. Hepatology 50, 1464-1474.

    Yu, Q., Zhang, K., Wang, X., Liu, X., and Zhang, Z. (2010). Expression of transcription factors snail, slug, and twist in human bladder carcinoma. J Exp Clin Cancer Res 29, 119.

    Zamore, P.D., Tuschl, T., Sharp, P.A., and Bartel, D.P. (2000). RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33.

    吳家如 , 吳文陞. (2006). Multiple roles of snail in regulation for TPA-triggered growth inhibition , Epithelial-mesenchymal transition and migration of HepG2 cells. 慈濟大學醫學生物技術研究所碩士論文.

    無法下載圖示 校內:2021-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE