研究生: |
謝武憲 Sie, Wu-Sian |
---|---|
論文名稱: |
三價銥錯合物的綠色合成與元件應用之研究 A Study on Green Synthesis and Device Application of Iridium (III) Complexes |
指導教授: |
許拱北
Shiu, Kom-Bei |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 218 |
中文關鍵詞: | 銥 、自組裝 、有機發光二極體 、研磨合成 、水熱法 、機械化學 |
外文關鍵詞: | iridium, OLED, LEC, Green chemistry, hydrothermal synthesis |
相關次數: | 點閱:103 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用自組裝合成的方式以[Ir(2-ppy)2(MeCN)2][NO3] (S1) 與[Ir(2-tpy)2(MeCN)2][NO3] (S2)做為起始物(ppy = 2-phenylpyridine、 tpy = 2-(p-tolyl)pyridine),順利的合成出2個四核環狀銥(III)金屬化合物[Ir(2-ppy)2(-4,4’-bp)]4(NO3)4 (1a)、 [Ir(2-tpy)2(-4,4’-bp)]4 (NO3)4 (2a) 與2個二核環狀銥金屬化合物[Ir(2-ppy)2(-1,2-dpe)]2 (NO3)2 (1b)、[Ir(2-tpy)2(-1,2-dpe)]2(NO3)2 (2b),另外並合成一個單核銥金屬化合物[Ir(2-ppy)2(py)2](NO3) (3a) 作為性質上的比較(4,4’-bp = 4,4’-bipyridine、 1,2-dpe = 1,2-di(4-pyridyl)ethane、 py = pyridine),所有的化合物均利用元素分析、IR及NMR光譜進行鑑定,其中1a、2a、2b與3a也進一步的得到單晶結構,所得到的產物的光物理性質也有進行研究,並進一步的應用在OLED與LEC元件的發光層上。
另一部份,利用研磨法與水熱法的合成方式,將一系列銥(III)化合物以無溶劑或是水溶劑進行合成,改良原本文獻使用有機溶劑的作法,使該系列化合物的合成更符合綠色化學的精神,也將產率提高、時間縮短,讓合成更有效率。
利用研磨的方式可以順利合成出[M(2-N^C)2(MeCN)2](NO3)、[M(2-(N^C)2(-X)]2、[M(2-N^C)2(2-O^O)]、[M(2-N^C)2(2-O^N)]、[M(2-N^C)2(2-S^S)]、[M(2-N^C)2(2-S^N)]與[M(2-N^C)2(2-N^N)] (NO3)七種類型的化合物,其中 M=Ir、Rh,N^C = ppy、tpy、dfppy,X = Cl、Br、I、SCN,O^O = acac、R-CO2、O^N = pic、hp、hcp,S^S = Et2NCS2、S^N = tp,N^N = 2,2’-bp、phen,(dfppy = 2-(2,4-difluorophenyl)pyridine、acac = acetylacetate、pic = picolate、hp = pyridin-2olate、hcp = 6-chloropyridin-2olate、tp = pyridine-2-thiol、2,2’-bp = 2,2’-bipyridine、phen = 1,10-phenanthroline),研磨的過程只需要20~40分鐘,產率可以高達90~98%,提供這一系列的化合物一個利用固態研磨且高產率、有效率的新合成方法。
水熱法的合成方式則是以水當溶劑,利用水熱法的裝置可以順利的以IrCl3為起始物合成出[Ir(2-N^C)2(-X)]2,其中N^C = ppy、tpy與dfppy,X = Cl與I,也可以以[Ir(2-N^C)2(-I)]2 或IrCl3為起始合成出 mer-Ir(2-N^C)3與 fac-Ir(2-N^C)3兩個立體異構物,另外也以[Ir(2-ppy)2(-I)]2為起始物,利用水熱法合成出Ir(2-ppy)2(-L^X)與[Ir(2-ppy)2(2-N^N)](I),其中L^X = pic、8-hydroxyquinolinm與acac,N^N = 2,2’-bp與phen,藉由調控反應條件,可以利用水當溶劑,以一鍋法的方式便合成出這些化合物,並提高產率,在反應的過程中可減少有機溶劑的使用,利用水熱法合成的方式,我們提供此類型化物一個綠色且有效率的合成新方式。
In this thesis, we synthesized the cyclo-tetrairidium(III) complexes [Ir(2-ppy)2(-4,4’-bp)]4(NO3)4 (1a), [Ir(2-tpy)2(-4,4’-bp)]4(NO3)4 (2a) and the cyclo-diiridium(III) complexes [Ir(2-ppy)2(-1,2-dpe)]2(NO3)2 (1b), [Ir(2-tpy)2(-1,2-dpe)]2(NO3)2 (2b) by self-assembly approach using the [Ir(2-ppy)2(MeCN)2](NO3) (S1) and [Ir(2-tpy)2(MeCN)2] (NO3) (S2) as the starting material. In addition, we also synthesized the mono-iridium(III) complex [Ir(2-ppy)2(py)2](NO3) (3a) as the properties comparison, where the ppy is 2-phenylpyridine, the 4,4’-bp is 4,4’-bipyridine, the 1,2-dpe is 1,2-di(4-pyridyl)ethane, the tpy is 2-(p-tolyl)pyridine. All the complexes were characterized by element analysis, IR and NMR. The single crystal structure of complexes 1a, 2a, 2b and 3a have been determined. The photo-physical properties of all the complexes are also studied, and further applications in the light-emitting layer of OLED and LEC devices
Another part, the grinding and hydrothermal synthesis method had been used to synthesis a series of iridium(III) compounds without solvent or using water as the solvent. We modified the original synthesis of literature usage of organic solvents to make the synthesis fit in the spirit of Green Chemistry. We also improve the yields and reduce the time to let the synthesis more efficient.
Using the grinding method, We can synthesize the seven types of complexes [M(2-N^C)2(MeCN)2](NO3), [M(2-(N^C)2(-X)]2, [M(2-N^C)2(2-O^O)], [M(2-N^C)2(2-O^N)], [M(2-N^C)2(2-S^S)], [M(2-N^C)2(2-S^N)] and [M(2-N^C)2(2-N^N)] (NO3), M = Ir, Rh; N^C = ppy, tpy, dfppy; X = Cl, Br, I, SCN; O^O = acac, R-CO2; O^N = pic, hp, hcp; S^S = Et2NCS2; S^N = tp; N^N = 2,2’-bp, phen. The process of grinding just need 20~40 minutes and the yields can improve up to 90~99 %, where the dfppy is 2-(2,4-difluorophenyl) -pyridine, the acac is acetylacetate, the pic is picolate, the hp is pyridin-2olate, the hcp is 6-chloropyridin-2olate, the tp is pyridine-2-thiol, the 2,2’-bp is 2,2’-bipyridine, the phen is 1,10-phenanthroline. We provide this series of complexes in a new, solid-state grinding, higher yield, and more efficient synthesis method.
Hydrothermal synthesis is based on water solvent. We use IrCl3 as starting material to synthesize the [Ir(2-N^C)2(-X)]2, where N^C = ppy, tpy and dfppy, X = Cl and I, and use [Ir(2-N^C)2(-I)]2 or IrCl3 as starting material to synthesize the mer-Ir(2-N^C)3 and fac-Ir(2-N^C)3. We also use [Ir(2-ppy)2(-I)]2 as starting material to synthesize the Ir(2-ppy)2(-L^X) and [Ir(2-ppy)2(2-N^N)](I) by hydrothermal synthesis, where L^X = pic, 8-hydroxyquinolinm and acac, N^N = 2,2’-bp and phen. Through the regulation of reaction conditions, we can use water as solvent for one-pot approach to synthesize these series of compounds with improment of yield and reduce the useage of organic solvents. By hydrothermal synthesis, we provide this type of compound a new, green and more efficient way of synthesis.
參考文獻
(1) 季昀; 宋怡樺 科學發展 2009, 534, 42.
(2) Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151.
(3) Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Applied Physics Letters 1999, 75, 4.
(4) Baldo, M. A.; O'Brien, D. F.; Thompson, M. E.; Forrest, S. R. Physical Review B 1999, 60, 14422.
(5) Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Pure and Applied Chemistry 1999, 71, 2095.
(6) O'Brien, D. F.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Applied Physics Letters 1999, 74, 442.
(7) Pei, Q. B.; Yu, G.; Zhang, C.; Yang, Y.; Heeger, A. J. Science 1995, 269, 1086.
(8) Handy, E. S.; Pal, A. J.; Rubner, M. F. Journal of the American Chemical Society 1999, 121, 3525.
(9) Slinker, J. D.; Gorodetsky, A. A.; Lowry, M. S.; Wang, J. J.; Parker, S.; Rohl, R.; Bernhard, S.; Malliaras, G. G. Journal of the American Chemical Society 2004, 126, 2763.
(10) Era, M.; Tsutsui, T.; Saito, S. Applied Physics Letters 1995, 67, 2436.
(11) Aminaka, E.; Tsutsui, T.; Saito, S. J. Appl. Phys. 1996, 79, 8808.
(12) Barta, P.; Sanetra, J.; Zagorska, M. Synthetic Metals 1998, 94, 119.
(13) Sanetra, J.; Barta, P.; Niziol, S.; Chrzaszcz, R.; Pielichowski, J. Synthetic Metals 1998, 94, 123.
(14) Vestweber, H.; Riess, W. Synthetic Metals 1997, 91, 181.
(15) Hanai, N.; Sumitomo, M.; Yanagi, H. Thin Solid Films 1998, 331, 106.
(16) Beierlein, T. A.; Brutting, W.; Riel, H.; Haskal, E. I.; Muller, P.; Riess, W. Synthetic Metals 2000, 111, 295.
(17) Era, M.; Tsutsui, T.; Takehara, K.; Isomura, K.; Taniguchi, H. Thin Solid Films 2000, 363, 229.
(18) Hung, L. S.; Tang, C. W.; Mason, M. G. Applied Physics Letters 1997, 70, 152.
(19) Stossel, M.; Staudigel, J.; Steuber, F.; Blassing, J.; Simmerer, J.; Winnacker, A.; Neuner, H.; Metzdorf, D.; Johannes, H. H.; Kowalsky, W. Synthetic Metals 2000, 111, 19.
(20) Lehn, J. M. Angewandte Chemie-International Edition in English 1988, 27, 89.
(21) Fujita, M.; Yazaki, J.; Ogura, K. Journal of the American Chemical Society 1990, 112, 5645.
(22) Lusby, P. J.; Muller, P.; Pike, S. J.; Slawin, A. M. Z. Journal of the American Chemical Society 2009, 131, 16398.
(23) Belanger, S.; Hupp, J. T.; Stern, C. L.; Slone, R. V.; Watson, D. F.; Carrell, T. G. Journal of the American Chemical Society 1999, 121, 557.
(24) Janzen, D. E.; Patel, K. N.; VanDerveer, D. G.; Grant, G. J. Chemical Communications 2006, 3540.
(25) Schnebeck, R. D.; Freisinger, E.; Lippert, B. European Journal of Inorganic Chemistry 2000, 1193.
(26) Berben, L. A.; Faia, M. C.; Crawford, N. R. M.; Long, J. R. Inorganic Chemistry 2006, 45, 6378.
(27) Uehara, K.; Kasai, K.; Mizuno, N. Inorganic Chemistry 2007, 46, 2563.
(28) Fujita, M.; Nagao, S.; Iida, M.; Ogata, K.; Ogura, K. Journal of the American Chemical Society 1993, 115, 1574.
(29) Slone, R. V.; Yoon, D. I.; Calhoun, R. M.; Hupp, J. T. Journal of the American Chemical Society 1995, 117, 11813.
(30) Yamashita, K.; Sato, K.; Kawano, M.; Fujita, M. New Journal of Chemistry 2009, 33, 264.
(31) Dedeian, K.; Djurovich, P. I.; Garces, F. O.; Carlson, G.; Watts, R. J. Inorganic Chemistry 1991, 30, 1685.
(32) Hanss, D.; Freys, J. C.; Bernardinelli, G.; Wenger, O. S. European Journal of Inorganic Chemistry 2009, 4850.
(33) Sprouse, S.; King, K. A.; Spellane, P. J.; Watts, R. J. Journal of the American Chemical Society 1984, 106, 6647.
(34) Schmid, B.; Garces, F. O.; Watts, R. J. Inorganic Chemistry 1994, 33, 9.
(35) Sie, W. S.; Lee, G. H.; Tsai, K. Y. D.; Chang, I. J.; Shiu, K. B. Journal of Molecular Structure 2008, 890, 198.
(36) Sie, W. S.; Jian, J. Y.; Su, T. C.; Lee, G. H.; Lee, H. M.; Shiu, K. B. Journal of Organometallic Chemistry 2008, 693, 1510.
(37) Burrows, P. E.; Shen, Z.; Bulovic, V.; McCarty, D. M.; Forrest, S. R.; Cronin, J. A.; Thompson, M. E. J. Appl. Phys. 1996, 79, 7991.
(38) Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bassler, H.; Porsch, M.; Daub, J. Advanced Materials 1995, 7, 551.
(39) Murty, B. S.; Ranganathan, S. International Materials Reviews 1998, 43, 101.
(40) Le Caer, G.; Ziller, T.; Delcroix, P.; Bellouard, C. Hyperfine Interactions 2000, 130, 45.
(41) Balaz, P.; Takacs, L.; Ohtani, T.; Mack, D. E.; Boldizarova, E.; Soika, V.; Achimovicova, M. Journal of Alloys and Compounds 2002, 337, 76.
(42) Eckert, J.; Holzer, J. C.; Krill, C. E.; Johnson, W. L. Journal of Materials Research 1992, 7, 1980.
(43) Sepelak, V.; Feldhoff, A.; Heitjans, P.; Krumeich, F.; Menzel, D.; Litterst, F. J.; Bergmann, I.; Becker, K. D. Chem Mater 2006, 18, 3057.
(44) Heegn, H.; Birkeneder, F.; Kamptner, A. Crystal Research and Technology 2003, 38, 7.
(45) Dercz, J.; Dercz, G.; Prusik, K.; Solecka, B.; Starczewska, A.; Ilczuk, J. International Journal of Thermophysics 2010, 31, 42.
(46) Xue, J. M.; Wang, J.; Weiseng, T. Journal of Alloys and Compounds 2000, 308, 139.
(47) Zhou, Z. H.; Xue, J. M.; Wang, J.; Chan, H. S. O.; Yu, T.; Shen, Z. X. J. Appl. Phys. 2002, 91, 6015.
(48) Arcos, D.; Valenzuela, R.; Vazquez, M.; Vallet-Regi, M. Journal of Solid State Chemistry 1998, 141, 10.
(49) Ren, R. M.; Yang, Z. G.; Shaw, L. L. Journal of the American Ceramic Society 2002, 85, 819.
(50) Xue, J. M.; Zhou, Z. H.; Wang, J. Journal of the American Ceramic Society 2002, 85, 807.
(51) Gogotsi, Y.; Welz, S.; Ersoy, D. A.; McNallan, M. J. Nature 2001, 411, 283.
(52) Tanaka, K.; Toda, F. Chemical Reviews 2000, 100, 1025.
(53) Cave, G. W. V.; Raston, C. L.; Scott, J. L. Chemical Communications 2001, 2159.
(54) Kaupp, G. Crystengcomm 2003, 117.
(55) Kaupp, G.; Naimi-Jamal, M. R.; Stepanenko, V. Chemistry-a European Journal 2003, 9, 4156.
(56) Braga, D.; Maini, L.; Polito, M.; Mirolo, L.; Grepioni, F. Chemistry-a European Journal 2003, 9, 4362.
(57) Belcher, W. J.; Longstaff, C. A.; Neckenig, M. R.; Steed, J. W. Chemical Communications 2002, 1602.
(58) Shan, N.; Jones, W. Green Chemistry 2003, 5, 728.
(59) Conti, M.; Falini, G.; Samori, B. Angewandte Chemie-International Edition 2000, 39, 215.
(60) Karki, S.; Friscic, T.; Fabian, L.; Laity, P. R.; Day, G. M.; Jones, W. Advanced Materials 2009, 21, 3905.
(61) Shan, N.; Toda, F.; Jones, W. Chemical Communications 2002, 2372.
(62) Friscic, T.; Mestrovic, E.; Samec, D. S.; Kaitner, B.; Fabian, L. Chemistry-a European Journal 2009, 15, 12644.
(63) Garay, A. L.; Pichon, A.; James, S. L. Chemical Society Reviews 2007, 36, 846.
(64) Oka, Y.; Yao, T.; Yamamoto, N. Journal of Materials Chemistry 1991, 1, 815.
(65) Wang, K.; Rangel, N. L.; Kundu, S.; Sotelo, J. C.; Tovar, R. M.; Seminario, J. M.; Liang, H. Journal of the American Chemical Society 2009, 131, 10447.
(66) Gennari, F. C.; Albanesi, L. F.; Rios, I. J. Inorganica Chimica Acta 2009, 362, 3731.
(67) Kruger, D.; Rousseau, R.; Fuchs, H.; Marx, D. Angewandte Chemie-International Edition 2003, 42, 2251.
(68) Li, J.; Djurovich, P. I.; Alleyne, B. D.; Yousufuddin, M.; Ho, N. N.; Thomas, J. C.; Peters, J. C.; Bau, R.; Thompson, M. E. Inorganic Chemistry 2005, 44, 1713.
(69) Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Kwong, R.; Tsyba, I.; Bortz, M.; Mui, B.; Bau, R.; Thompson, M. E. Inorganic Chemistry 2001, 40, 1704.
(70) Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H. E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. Journal of the American Chemical Society 2001, 123, 4304.
(71) Lamansky, S.; Djurovich, P. I.; Abdel-Razzaq, F.; Garon, S.; Murphy, D. L.; Thompson, M. E. J. Appl. Phys. 2002, 92, 1570.
(72) Li, J.; Djurovich, P. I.; Alleyne, B. D.; Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M. E. Polyhedron 2004, 23, 419.
(73) Lau, M. K.; Cheung, K. M.; Zhang, Q. F.; Song, Y. L.; Wong, W. T.; Williams, I. D.; Leung, W. H. Journal of Organometallic Chemistry 2004, 689, 2401.
(74) Huo, S. Q.; Deaton, J. C.; Rajeswaran, M.; Lenhart, W. C. Inorganic Chemistry 2006, 45, 3155.
(75) Djurovich, P. I.; Murphy, D.; Thompson, M. E.; Hernandez, B.; Gao, R.; Hunt, P. L.; Selke, M. Dalton Transactions 2007, 3763.
(76) You, Y. M.; Park, S. Y. Journal of the American Chemical Society 2005, 127, 12438.
(77) Lowry, M. S.; Hudson, W. R.; Pascal, R. A.; Bernhard, S. Journal of the American Chemical Society 2004, 126, 14129.
(78) Dawson, W. J. American Ceramic Society Bulletin 1988, 67, 1673.
(79) Wada, S.; Suzuki, T.; Noma, T. Journal of Materials Research 1995, 10, 306.
(80) Sajoto, T.; Djurovich, P. I.; Tamayo, A. B.; Oxgaard, J.; Goddard, W. A.; Thompson, M. E. Journal of the American Chemical Society 2009, 131, 9813.
(81) Tamayo, A. B.; Alleyne, B. D.; Djurovich, P. I.; Lamansky, S.; Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M. E. Journal of the American Chemical Society 2003, 125, 7377.
(82) D'Andrade, B. W.; Datta, S.; Forrest, S. R.; Djurovich, P.; Polikarpov, E.; Thompson, M. E. Org Electron 2005, 6, 11.
(83) King, S. M.; Al-Attar, H. A.; Evans, R. J.; Congreve, A.; Beeby, A.; Monkman, A. P. Adv Funct Mater 2006, 16, 1043.