| 研究生: |
林泓諭 Lin, Hong-Yu |
|---|---|
| 論文名稱: |
數位光學無光罩微影技術與光阻微結構形貌之改善 Digital Optical Maskless Lithography for Profile Optimizing On Photoresist Microstructures |
| 指導教授: |
李永春
Lee, Yung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 153 |
| 中文關鍵詞: | 無光罩微影 、表面聲波感測器 、光阻側壁角度 、三維微結構 |
| 外文關鍵詞: | Maskless lithography, Surface Acoustic Wave Sensor, Photoresist Sidewall Angle, Three-dimensional Microstructures |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分為三部分研究,都是基於數位微反射鏡裝置 (Digital Micro mirror Device, DMD) 的無光罩式微影技術,精確控制紫外 (UV) 光源投射在光阻表面的劑量分布,以製作不同款式的二維及三維結構,並精確控制其形貌的精度與準確性。
第一部分利用無光罩式微影技術結合金屬蒸鍍與舉離 (Lift-off) 製程,成功於4”壓電基板上製作出中心頻率為100 MHz的剪切表面聲波 (Shear Horizontal SAW, SH-SAW) 的指叉式電極感測器 (Inter-Digital Transducer, IDT),應用於生醫的免疫感測器快速診斷晶片與系統。此一研究挑戰的最小線寬/線距為4.185 / 4.185 μm,同時為了順利完成金屬電極的舉離製程,特別使用具反轉特性的光阻材料為光阻公司KemLab 型號KL-IR-L0 15光阻(KemLab Inc., MA, USA)。
第二部分研究針對正型光阻曝光顯影後,光阻邊緣處常出現的斜坡問題,導致後續蒸鍍金屬後舉離製程上的困難。為了改善正光阻曝光顯影後的斜坡問題,本研究將無光罩曝光機的掃描速度降低,以便於調整DMD曝光時的曝光點密度分布,得到最小的光阻斜坡寬度。模擬與實驗結果顯示,在將掃描速度降低為1/4的條件下,在最佳的優化結果可將厚0.86μm之正光阻的斜坡寬度之最大幅度可由原本的3.0 μm降低至 1.4 μm。
第三部分專注於製作高深比與圓錐狀的陣列式三維微結構,成功製作面積35×35 mm² 、週期性排列、噴嘴 (Nuzzle) 狀曲面錐形結構陣列,可應用於高效能的超音波噴孔片。此一研究首先建立數種正光阻材料的曝光顯影反應曲線,並配合數值模擬結果,精確控制投射曝光劑量的空間分佈,以獲得光阻顯影後所需特徵尺寸的三維微結構,所得到之噴嘴狀曲面圓錐結構的底部直徑104.50 μm、頂部直徑3.94 μm、高度27.45 μm。
This thesis consists of three research parts, all based on a maskless lithography system utilizing a Digital Micromirror Device (DMD), which precisely controls the ultraviolet (UV) light dose distribution projected onto the photoresist surface to fabricate various two-dimensional (2D) and three-dimensional (3D) microstructures with high shape accuracy and resolution.
In the first part, a DMD-based maskless lithography technique combined with metal evaporation and a lift-off process was used to fabricate shear-horizontal surface acoustic wave (SH-SAW), inter-digital transducer (IDT) sensors with a center frequency of 100 MHz on a 6-inch piezoelectric substrate. This device is intended for use in biomedical immunosensor rapid diagnostic systems. The design achieved a minimum linewidth/spacing of 4.185/4.185 μm. To ensure the success of the lift-off process, a reversal-type photoresist (KL-IR-L0 15, KemLab Inc., MA, USA) was used to create the necessary undercut sidewall profile.
The second part focuses on improving the sidewall slope issue that commonly occurs at the edge of positive photoresist patterns after exposure and development, which often leads to difficulties during metal lift-off. To address this, the scanning speed of the DMD-based exposure system was reduced, thereby enabling control over the exposure dot density distribution and minimizing the slope width. Simulation and experimental results showed that, under a reduced scanning speed (1/4 of the original), the slope width of a 0.86 μm-thick positive photoresist was effectively reduced from 3.0 μm to 1.4 μm.
The third part aims to fabricate high-aspect-ratio conical array microstructures. A periodic nozzle-shaped conical structure array with an area of 35 × 35 mm² was successfully fabricated, which can be applied in high-efficiency ultrasonic atomizing nozzles. Exposure-development response curves of several positive resists were established, and together with numerical simulation, the spatial distribution of UV dose was optimized to achieve the desired 3D resist profile. The resulting conical structures exhibited a base diameter of 104.50 μm, a top diameter of 3.94 μm, and a height of 27.45 μm.
[1]H. Mekaru, O. Koizumi, A. Ueno, and M. Takahashi, “Inclination of mold pattern's sidewalls by combined technique with photolithography at defocus-positions and electroforming,” Microsyst. Technol., vol. 16, no. 8–9, pp. 1323–1330, Aug. 2010.
[2]J. E. Webb and R. McCleary, “Characterizing and solving imaging challenges in thick resists for wafer and panel based lithography applications,” in Proc. ISOM 2016 Int. Symp. Opt. Memory and Opt. Data Storage, Pasadena, CA, USA, Oct. 10–13, 2016, Art. no. TP22, pp. 38–43.
[3]S. C. Saha, H. Sagberg, E. Poppe, G. U. Jensen, T. A. Fjeldly, and T. Saether, “Tuning of resist slope with hard-baking parameters and release methods of extra hard photoresist for RF MEMS switches,” Sens. Actuators A Phys., vol. 143, no. 2, pp. 452–461, May 16, 2008.
[4]Z.-C. Geng, Z.-F. Zhou, H. Dai, and Q.-A. Huang, “A 2D waveguide method for lithography simulation of thick SU-8 photoresist,” Micromachines, vol. 11, no. 11, Art. no. 972, 2020.
[5]A. Erdmann, C. L. Henderson, and C. G. Willson, “Impact of exposure induced refractive index changes of photoresists on the photolithographic process,” J. Appl. Phys., vol. 89, no. 12, pp. 8163–8168, Jun. 15, 2001.
[6]D. R. Dunbobbin and J. Faguet, “Single-step, positive-tone, lift-off process using AZ 5214-E resist,” in Proc. SPIE 922, Optical/Laser Microlithography, vol. 922, pp. 247–254, 1988.
[7]A. Gerardino, M. Gentili, E. Di Fabrizio, R. Calarco, and L. Mastrogiacomo, “Study of nanometer resolution resist slope for the UVIII chemically amplified resist,” Microelectron. Eng., vol. 46, no. 1–4, pp. 201–204, May 1999.
[8]C. El Chemali, J. Freudenberg, M. Hankinson, and J. J. Bendik, “Run-to-run critical dimension and sidewall angle lithography control using the PROLITH simulator,” IEEE Trans. Semicond. Manuf., vol. 17, no. 3, pp. 388–401, Aug. 2004.
[9]K.-H. Ko, Y. Moon, C. Jeong, H. Kim, C.-U. Jeon, and H.-K. Oh, “Influence of a non-ideal sidewall angle of extreme ultra-violet mask absorber for 1x-nm patterning in isomorphic and anamorphic lithography,” Microelectron. Eng., vol. 181, pp. 1–9, Sep. 5, 2017.
[10]K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol., vol. 56, pp. 367–371, Mar. 2014.
[11]Y. Zhang, J. Luo, Z. Xiong, H. Liu, L. Wang, Y. Gu, Z. Lu, J. Li, and J. Huang, “User-defined microstructures array fabricated by DMD based multistep lithography with dose modulation,” Opt. Express, vol. 27, no. 22, pp. 31956–31966, Oct. 28, 2019.
[12]Y.S. Syu, Y.C. Lee, “Development and Application of a High Precision Maskless Lithography System Based on Obliquely Scanning and Strobe Lighting Technology, ” Ph.D. dissertation, Dept. Mech. Eng., NCKU, Tainan, Taiwan, 2023.
[13]H.L. Chien, Y.C. Lee, “Maskless Lithography Systems Based on Point Array Scanning Method, ” Ph.D. dissertation, Dept. Mech. Eng., NCKU, Tainan, Taiwan, 2020.
[14]Y.S. Syu, Y.C. Lee, “Development and Application of a High Precision Maskless Lithography System Based on Obliquely Scanning and Strobe Lighting Technology, ” Ph.D. dissertation, Dept. Mech. Eng., NCKU, Tainan, Taiwan, 2023.
[15]Texas Instruments, “DLP6500 0.65 1080p MVSP Type A DMD,” DLPS040A datasheet, Oct. 2014 [Revised Oct. 2016].
[16]W.F. Lee, C.Y. Wu, Y.C. Lee, “High Performance Dmd Lithography Based on Oblique Scanning, Pulse Lighting, and Optical Distortion Calibration, ” M.S. thesis, Dept. Mech. Eng., NCKU, Tainan, Taiwan, 2023.
[17]H. Yatsuda, T. Kogai, M. Goto, K. Kano, and N. Yoshimura, “Immunosensor using 250 MHz shear horizontal surface acoustic wave delay line,” in Proc. Asia-Pacific Microw. Conf. (APMC), Kyoto, Japan, Nov. 6–9, 2018, pp. 566–568.
[18]MicroChemicals GmbH, “TI xLiftx image reversal resist: Technical data sheet,” Rev. Jan. 2018. [Online]. Available: https://www.microchemicals.com.
[19]F. Peng, C. Sun, H. Wan, and C. Gui, “An improved 3D OPC method for the fabrication of high-fidelity micro Fresnel lenses,” Micromachines, vol. 14, no. 12, Art. no. 2220, Dec. 2023.
[20]D. Frisch and U. D. Hanebeck, “Deterministic Gaussian sampling with generalized Fibonacci grids,” in Proc. 2021 IEEE 24th Int. Conf. Inf. Fusion (FUSION), Sun City, South Africa, 2021, pp. 1–8.
[21]D. Frisch and U. D. Hanebeck, “The generalized Fibonacci grid as low-discrepancy point set for optimal deterministic Gaussian sampling,” J. Adv. Inf. Fusion, vol. 18, no. 1, pp. 16–34, Jun. 2023.
[22]R. Marques, C. Bouville, K. Bouatouch, and J. Blat, “Extensible spherical Fibonacci grids,” IEEE Trans. Vis. Comput. Graph., vol. 27, no. 4, pp. 2341–2354, Apr. 1, 2021.
[23]I. H. Chang Chien, “Simulation of Photoresist Exposure and Fabrication of Random Microlens Arrays Based on Maskless Digital Lithography, ” M.S. thesis, Dept. Mech. Eng., NCKU, Tainan, Taiwan, 2024.
校內:2027-08-18公開