| 研究生: |
陳瑋 Chen, Wei |
|---|---|
| 論文名稱: |
鎳-鑭系金屬簇之合成、結構及磁性研究 Syntheses, structures, and magnetic properties of heterometallic nickel(II)-lanthanide complexes |
| 指導教授: |
蔡惠蓮
Tsai, Hui-Lien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 251 |
| 中文關鍵詞: | 鎳/鑭系金屬錯合物 、鏑錯合物 、β-雙酮 、單分子磁鐵 |
| 外文關鍵詞: | Ni-Ln complex, Dysprosium complex, β-diketone, single molecule magnets |
| 相關次數: | 點閱:130 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文分三部分,第一部分利用β-雙酮化合物(L1)分別與鎳及鑭系衍生物反應,合成兩個系列NiLn雙核混金屬錯合物[NiIILnIII(L1)2(MeOH)3(H2O)Cl2]Cl (Ln = Gd (1), Tb (2), Dy (3), Ho (4), Er (5))和[NiIILnIII(L1)2(MeOH)2(NO3)Cl2]·MeOH (Ln = Gd (7), Tb (8), Dy (9)),利用X光單晶繞射確認其結構。錯合物的中心金屬構形,NiII為扭曲八面體,LnIII為十二面體。從直流磁化率(DC)測量,顯示化合物1·Gd4·Ho 和 7·Gd9·Dy 金屬間存有鐵磁性(ferromagnetic)作用力,而5·Er則是存有反鐵磁性(antiferromagnetic)作用力。藉由交流磁化率(AC)的量測,2·Tb5·Er 和 9·Dy皆有觀察到磁緩現象,其中3·Dy的異向能(Ueff)為322 K,是目前鎳-鑭系單分子磁鐵中異向能最高的。亦藉由這兩個系列些微的配位差別,探討磁性的差異。第二部分利用Schiff base(L2)配位子與鎳及鑭系衍生物反應,得一系列Ni-Ln 四核混金屬錯合物 [NiII2LnIII2(L2)2(OAc)6(H2O)4](ClO4)2·4H2O (Ln = Gd (10), Tb (11), Dy (12), Ho (13)) ,利用X光單晶繞射確認其結構。從直流磁化率測量顯示化合物10·Gd–13·Ho 金屬間存有鐵磁性作用力。從交流磁化率的量測,其異相訊號(out-of-phase signals)只有11·Tb–13·Ho在低溫才顯現微弱的磁緩現象,可能是分子間或分子內鑭系原子相互作用所產生的量子穿隧效應。第三部分利用β-雙酮化合物(L3)分別與鎳及鑭系衍生物反應,得到Ni2Ln2 四核混金屬錯合物[NiII2LnIII2(L3)3(OAc)4(NO3)(MeO)2]·2MeOH·H2O (Ln = Y (14), Tb (15), Dy (16), Ho (17)),利用X光單晶繞射確認其結構。從直流磁化率測量顯示化合物15·Tb和16·Dy金屬間存有鐵磁性作用力,而17·Ho則是存有反鐵磁性(antiferromagnetic)作用力。並且由交流磁化率磁性量測得其15·Tb–17·Ho單分子磁鐵的磁緩現象及量子穿隧效應。
This work contains three parts. The first part, two series of heterometallic Ni-Ln dinuclear [NiIILnIII(L1)2(MeOH)3(H2O)Cl2]Cl (Ln = Gd (1), Tb (2), Dy (3), Ho (4), Er (5)) and [NiIILnIII(L1)2(MeOH)2(NO3)Cl2]·MeOH (Ln = Gd (7), Tb (8), Dy (9)) complexes have been synthesized by using a multidentate β-diketone ligand (L1), with Ni(II), Dy(III) metal ions. The structures of these compounds were determined by X-ray crystallography. Structural studies demonstrate that the metal centers in these complexes are bridged by two β-diketone ligands, leading to a [NiIILnIII(μ-O)2] core, and also show Ni ions in octahedral environment and lanthanide ions possessing a triangular dodecahedron geometry. Direct current (DC) magnetic susceptibility measurements reveal the presence of intramolecular ferromagnetic interactions in complexes 1·Gd4·Ho and 7·Gd9·Dy. However, intramolecular antiferromagnetic interactions exhibit in complex 5·Er. Alternating current (AC) magnetic susceptibility data indicate complexes 2·Tb5·Er and 9·Dy exhibiting slow relaxations of the magnetization. Moreover, the anisotropy energy of 3·Dy is the highest Ueff (322K) for all Ni-Ln complexes that have been found so far. Additionally, we discuss the tiny difference of the geometry between these two series of Ni-Ln complexes which may affect the magnetic behavior in different way. In the second part, a novel series of Ni-Ln tetranuclear [NiII2LnIII2(L2)2(OAc)6(H2O)4](ClO4)2·4H2O (Ln = Gd (10), Tb (11), Dy (12), Ho (13)) complexes have been obtained by using a Schiff based ligand (L2), with Ni(II), Dy(III) metal ions. The structures of these compounds were determined by X-ray crystallography. DC magnetic susceptibility measurements reveal the presence of ferromagnetic interactions between NiII and LnIII in complexes 10·Gd–13·Ho. AC magnetic susceptibility data indicate complexes 11·Tb–13·Ho exhibiting out-of-phase signals at low temperature because of the presence of strong quantum tunneling of magnetization (QTM) by the intermolecular and/or intramolecular interaction between lanthanide (III) ions. The third part, a series of defect-dicubane 3d-4f tetranuclear [NiII2LnIII2(L3)3(OAc)4(NO3)(MeO)2]·2MeOH·H2O (Ln = Y (14), Tb (15), Dy (16), Ho (17)) complexes have been synthesized by using another β-diketone multidentate ligand (L3), with Ni(II), Dy(III) metal ions. The structures of these compounds were determined by X-ray crystallography. DC magnetic susceptibility measurements reveal the presence of ferromagnetic interactions between NiII and LnIII in complexes 15·Tb and 16·Dy. However, intramolecular antiferromagnetic interactions exhibit in complex 17·Ho. AC magnetic susceptibility data indicate complexes 15·Tb–17·Ho exhibiting slow relaxation and QTM of the magnetization.
(1) Sessoli, R.; Hui, L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Folting, K.; Gatteschi, D.; Christou, G. J. Am. Chem. Soc. 1993, 115, 1804.
(2) Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Nature 1993, 365, 141.
(3) Warner, M.; Din, S.; Tupitsyn, I. S.; Morley, G. W.; Stoneham, A. M.; Gardener, J. A.; Wu, Z. L.; Fisher, A. J.; Heutz, S.; Kay, C. W. M. Nature 2013 503, 504-508.
(4) Roch, N.; Florens, S.; Bouchiat, V.; Wernsdorfer, W.; Balestro, F. Nature 453, 2008, 633.
(5) Corradini, V.; Ghirri, A.; Candini, A.; Biagi, R.; del Pennino, U.; Dotti, G.; Otero, E.; Choueikani, F.; Blagg, R. J.; McInnes, E. J. L. Adv. Mater. 2013 25, 2816.
(6) Kahn, O.; Martinez, C. J. Science 1998, 279, 44.
(7) Lee, C. F.; Leigh, D. A.; Pritchard, R. G.; Schultz, D.; Teat, S. J.; Timco, G. A.; Winpenny, R. E. P. Nature 2009, 458, 314.
(8) Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets; Oxford University Press: Oxford, 2006.
(9) Ishikawa, N.; Sugita, S.; Ishikawa, T.; Koshihara, S.; Kaizu, Y. J. Am. Chem. Soc. 2003, 125, 8694-8695.
(10) Gao, S.; D.M.P. Mingos; Oxford; United Kingdom. Molecular Nanomagnets and Related Phenomena; Springer, 2014.
(11) (a) Woodruff, D. N.; Winpenny, R. E. P.; Layfield, R. A.; Chem. Rev. 2013, 113, 5110−5148.(b) Chen, Y.-C.; Liu, J.-L; Ungur, L.; Liu, J., Li, Q.-W.; Wang, L.-F.; Ni Z.-P.; Chibotaru L. F.; Chen X.-M.; Tong M.-L. J. Am. Chem. Soc. 2016, 138, 2829−2837.
(12) Yang, C.-I.; Wernsdorfer, W.; Lee, G.-H.; Tsai, H.-L. J. Am. Chem. Soc. 2007, 129, 456-457.
(13) Waldmann, O.; Inorg. Chem. 2007, 46, 10035-10037.
(14) Liu, K.; Shi, W.; Cheng, P. Coordination Chemistry Reviews 2015, 289–290.
(15) Low, D. M.; Jones, L. F.; Bell, A.; Brechin, E. K.; Mallah, T.; Riviére, E.; Teat, S. J.; McInnes, E. J. L. Angew. Chem. Int. Ed. 2003, 42, 3781.
(16) Ako, A. M.; Hewitt, I. J.; Mereacre, V.; Clérac, R.; Wernsdorfer, W.; Anson, C. E.; Powell, A. K. Angew. Chem. Int. Ed. 2006, 45, 4926.
(17) Zhang, X. J.; Vieru, V.; Feng, X. W.; Liu, J. L.; Zhang, Z. J.; Na, B.; Shi, W.; Wang, B. W.; Powell, A. K.; Chibotaru, L. F.; Gao, S.; Cheng, P.; Long, J. R. Angew. Chem. Int. Ed. 2015, 54, 9861-9865; Angew. Chem. 2015, 127, 9999-10003.
(18) Ishikawa, N.; Sugita, M.; Wernsdorfer, W. Angew. Chem. Int. Ed. 2005, 44, 2931-2935; Angew. Chem. 2005, 117, 2991-2995.
(19) Rinehart, J. D.; Fang, M.; Evans, W. J.; Long, J. R. Nat. Chem. 2011, 3, 538-542.
(20) Rinehart, J. D.; Fang, M.; Evans, W. J.; Long, J. R. J. Am. Chem. Soc. 2011, 133, 14236-14239.
(21) Westerström, R.; Dreiser, J.; Piamonteze, C.; Muntwiler, M.; Weyeneth, S.; Krämer, K.; Liu,;S. X.; Decurtins, S.; Popov, A.; Yang, S.; Dunsch, L.; Greber, T. Phys. Rev. B 2014, 89, 060406.
(22) Junghans, K.; Schlesier, C.; Kostanyan, A.; Samoylova, N. A.; Deng, Q. M.; Rosenkranz, M.; Schiemenz, S.; Westerström, R.; Greber, T., Büchner, B.; Popov, A. A. Angew. Chem. Int. Ed. 2015, 54, 13411-13415; Angew. Chem. 2015, 127, 13609-13613.
(23) Singh, M. K.; Yadav, N.; Rajaraman, G. Chem. Commun. 2015, 51, 17732-17735.
(24) Ganivet, C. R.; Ballesteros, B.; de la Torre, G.; Clemente-Juan, J. M.; Coronado, E.; Torres, T. Chem. Eur. J. 2013, 19, 1457-1465.
(25) Pineda, E. M.; Chilton, N. F.; Marx, R.; Dörfel, M.; Sells, D. O.; Neugebauer, P.; Jiang, S. D.; Collison, D.; van Slageren, J.; Mcinnes, E. J. L.; Winpenny, R. E. P. Nat. Commun. 2014, 5, 5243.
(26) Chilton, N. F.; Goodwin, C. A. P.; Mills, D. P.; Winpenny, R. E. P. Chem. Commun. 2015, 51, 101-103.
(27) Schmidt, S.; Prodius, D.; Mereacre, V.; Kostakis, G. E.; Powell, A. K. Chem. Commun. 2013, 49, 1696-1698
(28) Mondal, K. C.; Sundt, A.; Lan, Y. H.; Kostakis, G. E.; Waldmann, O.; Ungur, L.; Chibotaru, L. F.; Anson, C. E.; Powell, A. K. Angew. Chem. Int. Ed. 2012, 51, 7550-7554; Angew. Chem. 2012, 124, 7688-7672.
(29) Ahmed, N.; Das, C.; Vaidya, S.; Langley, S. K.; Murray, K. S.; Shanmugam, M. Chem. Eur. J. 2014, 20, 14235-14239.
(30) Langley, S. K.; Wielechowski, D. P.; Vieru, V.; Chilton, N. F.; Moubaraki, B.; Abrahams, B. F.; Chibotaru, L. F.; Murray, K. S. Angew. Chem. Int. Ed. 2013, 52, 12014-12019; Angew. Chem. 2013, 125, 12236-12241.
(31) Liddle, S. T.; van Slageren, J. Chem. Soc. Rev. 2015, 44, 6655.
(32) Chen, S. H.; Mereacre, V.; Prodius, D.; Kostakis, G. E.; Powell, A. K. Inorg. Chem. 2015, 54, 3218-3227
(33) Feltham, H. L. C.; Brooker, S. Coord. Chem. Rev. 2014, 276, 1-33.
(34) Liu, J.-L.; Wu, J.-Y.; Chen, Y.-C.; Mereacre, V.; Powell, A. K.; Ungur, L.; Chibotaru, L. F.; Chen, X.-M.; Tong, M.-L. Angew. Chem. Int. Ed. 2014, 53, 12966-12970.
(35) Georgopoulou, A. N.; Adam, R.; Raptopoulou, C. P.; Psycharis, V.; Ballesteros, R.; Abarca, B.; Boudalis, A. K. Dalton Trans., 2010, 39, 5020–5027.
(36) Xie, Q. W.; Wu, S. Q.; Liu, C. M.; Cui, A. L.; Kou, H. Z. Dalton Trans. 2013, 42, 11227-11233.
(37) Costes, J. P.; Vendier, L. Eur. J. Inorg. Chem. 2010, 2768-2773.
(38) Wen, H. R.; Liu, S. J.; Xie, X. R.; Bao, J.; Liu, C. M.; Chen, J. L. Inor. Chem. Acta. 2015,435, 274–282.
(39) Yamaguchi, T.; Sunatsuki, Y.; Ishida H.; Kojima M.; Akashi, H., Re, N.; Matsumoto, N.; Pochaba, A.; Mrozinski, J. Inorg. Chem. 2008, 47, 5736.
(40) Colacio, E.; Ruiz-Sanchez, J.; White, F. J.; Brechin, E. K. Inorg. Chem. 2011, 50, 7268-7273.
(41) Colacio, E.; Ruiz, J.; Mota, A. J.; Palacios, M. A.; Cremades, E.; Ruiz, E.; White, F. J.; Brechin, E. K. Inorg. Chem. 2012, 51, 5857-5868.
(42) Towatari, M.; Nishi, K.; Fujinami, T.; Matsumoto, N.; Sunatsuki, Y.; Kojima, M.; Mochida, N.; Ishida, T.; Re, N.; Mrozinski, J. Inorg. Chem. 2013, 52, 6160-6178.
(43) Lu, X.-Y.; Liu, Y.-Q.; Deng, X.-W.; Zhu, Z.-X.; Yao, M.-X.; Jing, S. New J. Chem., 2015, 39, 3467.
(44) Pasatoiu, T. D.; Sutter, J. P.; Madalan, A. M.; Fellah, F. Z. C.; Duhayon, C.; Andruh, M. Inorg. Chem. 2011, 50, 5890-5898.
(45) Okazawa, A.; Shimada, T.; Kojima, N.; Yoshii, S.; Nojiri, H.; Ishida, T. Inorg. Chem. 2013, 52, 13351−13355.
(46) Pointillart, F.; Bernot, K.; Sessoli, R.; Gatteschi, D. Chem. Eur. J. 2007, 13, 1602-1609.
(47) Das, S.; Dey, A.; Kundu, S.; Biswas, S.; Mota, A. J.; Colacio, E.; Chandrasekhar, V. Chem. Asian J. 2014, 9, 1876-1887.
(48) Efthymiou, C. G.; Georgopoulou, A. N.; Papatriantafyllopoulou, C.; Terzis, A.; Raptopoulou, C. P.; Escuer, A.; Perlepes, S. P. Dalton Trans. 2010, 39, 8603-8605.
(49) Bhunia, A.; Yadav, M.; Lan, Y. H.; Powell, A. K.; Menges, F.; Riehn, C.; Niedner-Schatteburg, G.; Jana, P. P.; Riedel, R.; Harms, K.; Dehnen, S.; Roesky, P. W. Dalton Trans. 2013, 42, 2445-2450.
(50) Shiga, T.; Ito, N.; Hidaka, A.; Ohkawa, H.; Kitagawa, S.; Ohba, M. Inorg. Chem. 2007, 46, 3492-3501.
(51) Chandrasekhar, V.; Pandian, B. M.; Boomishankar, R.; Steiner, A.; Viftal, J. J.; Houri, A.; Clérac, R. Inorg. Chem. 2008, 47, 4918-4929.
(52) Georgopoulou, A. N.; Efthymiou, C. G.; Papatriantafyllopoulou, C.; Psycharis, V.; Raptopoulou, C. P.; Manos, M.; Tasiopoulos, A. J.; Escuer, A.; Perlepes, S. P. Polyhedron 2011, 30, 2978-2986.
(53) Liu, B. L.; Liu, Q. X.; Xiao, H. P.; Zhang, W.; Tao, R. J. Dalton Trans. 2013, 42, 5047-5055.
(54) Pasatoiu, T. D.; Etienne, M.; Madalan, A. M.; Andruh, M.; Sessoli, R. Dalton Trans. 2010, 39, 4802-4808.
(55) Meng, Z. S.; Guo, F. S.; Liu, J. L.; Leng, J. D.; Tong, M. L. Dalton Trans. 2012, 41, 2320-2329.
(56) Gao, Y.; Zhao, L.; Xu, X.; Xu, G.-F.; Guo, Y.-N.; Tang, J.; Liu, Z. Inor. Chem. 2011, 50, 1305.
(57) Mondal, K. C.; Kostakis, G. E.; Lan, Y.; Wernsdorfer, W.; Anson, C. E.; Powell, A. K. Inorg. Chem. 2011, 50, 11604–11611
(58) Sakamoto, S.; Fujinami, T.; Nishi, K.; Matsumoto, N.; Mochida, N.; Ishida, T.; Sunatsuki, Y.; Re, N. Inorg. Chem. 2013, 52, 7218-7229.
(59) Zhao, F. H.; Li, H.; Che, Y. X.; Zheng, J. M.; Vieru, V.; Chibotaru, L. F.; Grandjean, F.; Long, G. J. Inorg. Chem. 2014, 53, 9785−9799.
(60) Pineda, E. M.; Chilton, N. F.; Tuna, F.; Winpenny, R. E. P.; McInnes, E. J. L. Inorg. Chem. 2015, 54, 5930−5941.
(61) Zou, H. H.; Sheng, L. B.; Liang, F. P.; Chena, Z. L.; Zhang, Y. Q. Dalton Trans. 2015, 44, 18544–18552.
(62) Chandrasekhar, V.; Bag, P.; Kroener, W.; Gieb, K.; Müller, P. Inorg. Chem. 2013, 52, 13078-13086.
(63) Wang, P.; Shannigrahi, S.; Yakovlev, N. L.; Hor, T. S. A. Dalton Trans., 2014, 43, 182–187.
(64) Efthymiou, C. G.; Stamatatos, T. C.; Papatriantafyllopoulou, C.; Tasiopoulos, A. J.; Wernsdorfer, W.; Perlepes, S. P.; Christou, G. Inorg. Chem. 2010, 49, 9737-9739.
(65) Goura, J.; Guillaume, R.; Rivière, E.; Chandrasekhar, V. Inorg. Chem. 2014, 53, 7815−7823.
(66) Das, S.; Hossain, S.; Dey, A.; Biswas, S.; Pardo, E.; Lloret, F.; Chandrasekhar, V. Eur. J. Inorg. Chem. 2014, 3393–3400.
(67) Zhao, L.; Wu, J.; Ke, H.; Tang, J. Inorg. Chem. 2014, 53, 3519-3525.
(68) Ke, H.-S.; Zhao, L.; Guo, Y.; Tang, J.-K. Inorg. Chem. 2012, 51, 2699-2705.
(69) Wang, H. Y.; Ke, H. S.; Lin, S.-Y.; Guo, Y.; Zhao, L.; Tang, J. K.; Li, Y. H. Dalton Trans. 2013, 42, 5298-5303.
(70) Canaj, A. B.; Tzimopoulos, D. I.; Siczek, M.; Lis, T.; Inglis, R. and Milios, C. J. Inorg. Chem. 2015, 54, 7089−7095.
(71) Hossain, S.; Das, S.; Chakraborty, A.; Lloret, F.; Cano, J.; Pardo, E.; Chandrasekhar Dalton Trans. 2014, 43, 10164-10174.
(72) Papatriantafyllopoulou, C.; Stamatatos, T. C.; Efthymiou, C. G.; Cunha-Silva, L.; Paz, F. A. A.; Perlepes, S. P.; Christou, G. Inorg. Chem. 2010, 49, 9743-9745.
(73) Peng, J. B.; Zhang, Q. C.; Kong, X. J.; Zheng, Y. Z.; Ren, Y. P.; Long, L. S.; Huang, R. B.; Zheng, L. S.; Zheng, Z. P. J. Am. Chem. Soc. 2012, 134, 3314-3317.
(74) Levine, R.; Sneed, J. K. J. Am. Chem. Soc. 1951, 73, 4478-4478.
(75) Sheldrick, G. M.; SHELXL-97, University of Göttingen, Göttingen. Germany, 1997.
(76) Boudreaux, E. A.; Mulay, L. N., Theory and Application of Molecular Paramagnetism; John Wiely & Sons: New York, 1976.
(77) Llunell, M.; Casanova, D.; Cirera, J.; Bofill, J. M.; Alemany, P.; Alvarez, S.; Pinsky, M.; Avnir, D. SHAPE v2.1, Barcelona, 2013.
(78) Benelli, C.; Gatteschi, D. Chem. Rev. 2002, 102, 2369-2387.
(79) Boca, R. Theoretical Foundations of Molecular Magnetism, Elsevier, Lausanne, 1999.
(80) Boca, R. Coord. Chem. Rev. 2004, 248, 757–815.
(81) Orendáč, M.; Sedláková, L.; Čižmár, E.; Orendáčová, A.; Feher, A.; Zvyagin, S. A.; Wosnitza, J.; Zhu, W. H.; Wang, Z. M.; Gao, S. Phys. Rev. B 2010, 81, 214410.
(82) Martínez-Pérez, M. J.; Cardona-Serra, S.; Schlegel, C.; Moro, F.; Alonso, P. J.; Prima-García, H.; Clemente-Juan, J. M.; Evangelisti, M.; Gaita-Ariño, A.; Sesé, J.; Van Slageren, J.; Coronado, E.; Luiz, F. Phys. Rev. Lett. 2012, 108, 247213.
(83) Upadhyay, A.; Das, C.; Shanmugam, Mu.; Langley, S. K.; Murray, K. S.; Shanmugam, M. Eur. J. Inorg. Chem. 2014, 4320-4325.
(84) Costes, J. P.; Dahan, F.; Dupuis, A.; Laurent, J. P. Inorg. Chem. 1997, 36, 4284-4286.
(85) Chen, Q.-Y.; Luo, Q.-H.; Zheng, L.-M.; Wang, Z.-L.; Chen, J.-T. Inorg. Chem. 2002, 41, 605-605.
(86) Kahn, M. L.; Sutter, J. P.; Golhen, S.; Guionneau, P.; Ouahab, L.; Kahn, O.; Chasseau, D. J. Am. Chem. Soc. 2000, 122, 3413-3421.
(87) Sutter, J. P.; Kahn, M. L.; Mortl, K. P.; Ballou, R.; Porcher, P. Polyhedron 2001, 20, 1593-1597.
(88) Osa, S.; Kido, T.; Matsumoto, N.; Re, N.; Pochaba, A.; Mrozinski, J. J. Am. Chem. Soc. 2004, 126, 420-421.
(89) Wang, Y. L.; Ma, Y.; Yang, X.; Tang, J. K.; Cheng, P.; Wang, Q. L.; Li, L. C.; Liao, D. Z. Inorg. Chem. 2013, 52, 7380-7386.
(90) Cole, K. S.; Cole, R. H. J. Chem. Phys. 1941, 9, 341-352.
(91) Aubin, S. M. J.; Z. Sun,; Pardi, L.; Krzystek, J.; Folting, K.; Brunel, L. C.; Rheingold, A. L.; Christou, G.; Hendrickson, D. N. Inorg. Chem. 1999, 38, 5329-5340.
(92) Sun, W.-B.; Yan, P.-F.; Jiang, S.-D.; Wang, B.-W.; Zhang, Y.-Q.; Li, H.-F.; Chen, P.; Wang, Z.-M.; Gao, S. Chem. Sci. 2016, 7, 684-691.
(93) Liu, J.-L.; Chen, Y.-C.; Zheng, Y.-Z.; Lin, W.-Q.; Ungur, L.; Wernsdorfer, W.; Chibotaru, L. F.; Tong, M. L. Chem. Sci. 2013, 4, 3310-3316.
(95) Costes, J. P.; Dahan, F.; Nicodeme, F. Inorg. Chem. 2001, 40, 5285-5287.
(96) Ishikawa, N.; Iino, T.; Kaizu, Y. J. Am. Chem. Soc. 2002, 124, 11440-11447.
(97) Blagg, R. J.; Muryn, C. A.; McInnes, E. J. L.; Tuna, F.; Winpenny, R. E. P. Angew. Chem. Int. Ed. 2011, 50, 6530-6533; Angew. Chem. 2011, 123, 6660-6663.
(98) Blagg, R. J.; Ungur, L.; Tuna, F.; Spwak, J.; Comar, P.; Collison, D.; Wernsdorfer, W.; McInnes, E. J. L.; Chibotaru, L. F.; Winpenny, R. E. P. Nat. Chem. 2013, 5, 673-678.
(99) Jiang, S.-D.; Wang, B.-W.; Su, G.; Wang, Z.-M.; Gao, S. Angew. Chem. Int. Ed. 2010, 49, 7448-7451; Angew. Chem. 2010, 122, 7610-7613.
(100) Papatriantafyllopoulou, C.; Wernsdorfer, W.; Abboud, K. A.; Christou, G. Inorg. Chem. 2011, 50, 421-423.
(101) Chilton, N. F.; Langley, S. K.; Moubaraki, B.; Soncini, A.; Batten, S. R.; Murray, K. S. Chem. Sci. 2013, 4, 1719-1730.
(102) Zhu, J.; Wang, C. Z.; Luan, F.; Liu, T. Q.; Yan, P. F.; Li, G. M. Inorg. Chem. 2014, 53, 8895-8901.
(103) Feng, H.-K.; Huang, P.-J.; Tsai, H.-L. Dalton Trans. 2015, 44, 3764-3772.
(104) Chilton, N. F.; Collison, D.; McInnes, E. J. L.; Winpenny, R. E. P.; Soncini, A. Nat. Commun. 2013, 4, 2551.
(105) Aravena, D.; Ruiz, E. Inorg. Chem. 2013, 52, 13770-13778.