簡易檢索 / 詳目顯示

研究生: 洪御恩
Hung, Yu-En
論文名稱: 探討高密度脂蛋白在M1和M2巨噬細胞上的動脈粥狀硬化保護作用
Investigation of Athero-protective Effects of High-density Lipoprotein on M1 and M2 Macrophages
指導教授: 林韋伶
Lin, Wei-Ling
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 58
中文關鍵詞: 動脈粥狀硬化巨噬細胞極化高密度脂蛋白膽固醇排出移動能力
外文關鍵詞: Atherosclerosis, macrophage polarization, HDLs, cholesterol efflux, migration
相關次數: 點閱:114下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 心血管疾病是世界上造成死亡的主要原因之一,而動脈粥狀硬化是潛在的病理機制。動脈粥狀硬化是一種慢性發炎疾病,主要是由於大量的低密度脂蛋白(low-density lipoproteins, LDLs)累積在血管中,而巨噬細胞吞噬LDLs後,會形成泡沫細胞引發不良的免疫反應。因此,巨噬細胞在動脈粥狀硬化中扮演重要的角色,其可再進一步分為M1和M2兩種型態。促進發炎的M1巨噬細胞主要位於斑塊肩部和脂質核心,被認為會使斑塊較不穩定容易破裂並促進血栓形成;相比之下,抗發炎的 M2巨噬細胞大多出現在較穩定的區域,主要會參與動脈粥狀硬化的消退。此外,已知高密度脂蛋白(high-density lipoproteins, HDLs)會透過促進巨噬細胞中膽固醇的排除以及抑制發炎反應和LDLs的氧化來避免動脈粥狀硬化。然而目前較少研究針對HDLs對已分化之M1和M2巨噬細胞的影響。因此在這項研究中,我們想要確定HDLs對M1和M2巨噬細胞是否具有抑制動脈粥狀硬化的能力以及其參與的機制。首先,我們分離人類周邊血液單核細胞並分別分化成M1(LPS+IFN-γ)或M2(IL-4+IL-13)巨噬細胞。M1 巨噬細胞會表現出較細長的形態,並且高表達腫瘤壞死因子α (tumor necrosis factor α, TNF-α)、C-C趨化因子受體7 (C-C motif chemokine receptor 7, CCR7)和C-C趨化因子配體19 (C-C motif chemokine ligand 19, CCL19)。而樹突狀的M2巨噬細胞則是會表達較高的CD206、CCL13、CCL18和精氨酸酶1 (arginase 1, ARG-1)。我們的研究發現,在M1巨噬細胞中,HDLs可透過抑制促進發炎的CCL19及TNF-α表達,並誘導M2標誌物ARG-1表現來發揮抗發炎作用。而在M2巨噬細胞中,HDLs會增加CCR7和CCL18的表達,並且其抗氧化力、膽固醇排出能力和移動能力也都有顯著提升。因此,本研究發現HDLs在M1和M2巨噬細胞中會透過不同機制抑制動脈粥狀硬化。

    Cardiovascular disease is the leading cause of death in the world, and atherosclerosis is the underlying mechanism. Atherosclerosis is a chronic inflammatory disease caused by an accumulation of low-density lipoproteins (LDLs) and maladaptive immune responses arising from macrophage-derived foam cells. Macrophages, which play an important role in atherosclerosis, can be further divided into M1- and M2-type. Pro-inflammatory M1 macrophages, predominantly located in plaque shoulder and lipid core, are thought to trigger plaque destabilization and promote thrombosis. In contrast, anti-inflammatory M2 macrophages are found in more stable zones, where these cells are involved in the regression of atherosclerosis. In addition, high-density lipoproteins (HDLs) are known to protect against atherosclerosis by promoting macrophage cholesterol efflux while inhibiting inflammatory responses and LDLs oxidation. In this study, we intend to determine the athero-protective effects of HDLs on M1 and M2 macrophages. First, human peripheral blood mononuclear cells were differentiated into M1 (LPS+IFN-γ) or M2 (IL-4+IL-13) macrophages, respectively. M1 macrophages, which showed elongated morphology, have increased mRNA expression of tumor necrosis factor-α (TNF-α), C-C motif chemokine receptor 7 (CCR7), and C-C motif chemokine ligand 19 (CCL19). While dendritic-like M2 macrophages have the elevation of CD206, CCL13, CCL18, and arginase 1 (ARG-1). HDLs exert anti-inflammatory effects on M1 macrophages by suppressing M1 markers, CCL19 and TNF-α, while inducing M2 marker ARG-1. On the other hand, CCR7 and CCL18 were upregulated in M2 macrophages under HDLs treatment. Additionally, the antioxidant capacity, cholesterol efflux ability, and CCR7-mediated transmigration of M2 macrophages were upregulated by HDLs. Therefore, HDLs indeed exert athero-protective effects on M1 and M2 macrophages via different mechanisms.

    中文摘要 I Abstract II Acknowledgments III Table of Contents IV Figure list VI Appendix list VII Abbreviation VIII Introduction Atherosclerosis 1 Macrophage polarization 2 Macrophage plasticity in atherosclerosis 3 High-density lipoprotein (HDL) 5 HDL and atherosclerosis 6 HDL in macrophage polarization 8 Aims and strategies 9 Materials and methods Cell culture 10 Isolation of peripheral blood mononuclear cells (PBMCs) 10 Macrophage polarization and HDL treatment 11 HDL purification 11 Cell viability and proliferation 12 RNA extraction and quantitative real-time RT-PCR (RT-qPCR) 13 Enzyme-linked immunosorbent assay (ELISA) 13 Immunofluorescence stain 14 Western blot 15 Cholesterol efflux assay 16 Total antioxidant capacity 17 Transmigration assay 17 Statistical analysis 18 Results M1 and M2 macrophages differentiation 19 HDLs purification 20 HDLs alter the phenotype of M1 and M2 macrophages 20 HDLs induce the cholesterol efflux ability in M2 macrophages 21 HDLs increase the antioxidant capacity in M2 macrophages 22 HDLs increase the transmigration of M2 macrophages 23 Discussion 24 References 30 Figures 42 Appendices 52

    1. Benjamin, E.J., et al., Heart Disease and Stroke Statistics'2017 Update: A Report from the American Heart Association. Circulation, 2017. 135(10): p. e146-e603.
    2. Libby, P., Inflammation in atherosclerosis. Nature, 2002. 420(6917): p. 868-74.
    3. Ross, R., Atherosclerosis — An Inflammatory Disease. New England Journal of Medicine, 1999. 340(2): p. 115-126.
    4. Moore, K.J., F.J. Sheedy, and E.A. Fisher, Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol, 2013. 13(10): p. 709-21.
    5. Berliner, J.A., et al., Atherosclerosis: Basic Mechanisms. Circulation, 1995. 91(9): p. 2488-2496.
    6. Davignon, J. and P. Ganz, Role of Endothelial Dysfunction in Atherosclerosis. Circulation, 2004. 109(23_suppl_1): p. III-27-III-32.
    7. Hajjar, D.P. and A.M. Gotto, Biological Relevance of Inflammation and Oxidative Stress in the Pathogenesis of Arterial Diseases. The American Journal of Pathology, 2013. 182(5): p. 1474-1481.
    8. Williams, K.J. and I. Tabas, The Response-to-Retention Hypothesis of Early Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995. 15(5): p. 551-561.
    9. Mazzone, T., A. Chait, and J. Plutzky, Cardiovascular disease risk in type 2 diabetes mellitus: insights from mechanistic studies. Lancet, 2008. 371(9626): p. 1800-9.
    10. Kim, K.-W., S. Ivanov, and J.W. Williams, Monocyte Recruitment, Specification, and Function in Atherosclerosis. Cells, 2021. 10(1): p. 15.
    11. Tabas, I. and K.E. Bornfeldt, Macrophage Phenotype and Function in Different Stages of Atherosclerosis. Circulation Research, 2016. 118(4): p. 653-667.
    12. Anlamlert, W., Y. Lenbury, and J. Bell, Modeling fibrous cap formation in atherosclerotic plaque development: stability and oscillatory behavior. Advances in Difference Equations, 2017. 2017(1): p. 195.
    13. Stary, H.C., et al., A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation, 1995. 92(5): p. 1355-74.
    14. Barrett, T.J., Macrophages in Atherosclerosis Regression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020. 40(1): p. 20-33.
    15. Atri, C., F.Z. Guerfali, and D. Laouini, Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. Int J Mol Sci, 2018. 19(6).
    16. Sica, A. and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas. J Clin Invest, 2012. 122(3): p. 787-95.
    17. Martinez, F.O., et al., Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression. The Journal of Immunology, 2006. 177(10): p. 7303-7311.
    18. Lu, C.-H., et al., Involvement of M1 Macrophage Polarization in Endosomal Toll-Like Receptors Activated Psoriatic Inflammation. Mediators of inflammation, 2018. 2018: p. 3523642-3523642.
    19. Tedesco, S., et al., Phenotypic activation and pharmacological outcomes of spontaneously differentiated human monocyte-derived macrophages. Immunobiology, 2015. 220(5): p. 545-54.
    20. Biswas, S.K. and A. Mantovani, Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol, 2010. 11(10): p. 889-96.
    21. Italiani, P. and D. Boraschi, From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Frontiers in Immunology, 2014. 5.
    22. Saqib, U., et al., Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget, 2018. 9(25): p. 17937-17950.
    23. Lin, P., et al., Macrophage Plasticity and Atherosclerosis Therapy. Front Mol Biosci, 2021. 8: p. 679797.
    24. Robbins, C.S., et al., Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nature Medicine, 2013. 19(9): p. 1166-1172.
    25. Lahmar, Q., et al., Tissue-resident versus monocyte-derived macrophages in the tumor microenvironment. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 2016. 1865(1): p. 23-34.
    26. Honold, L. and M. Nahrendorf, Resident and Monocyte-Derived Macrophages in Cardiovascular Disease. Circ Res, 2018. 122(1): p. 113-127.
    27. Stöger, J.L., et al., Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis, 2012. 225(2): p. 461-468.
    28. de Gaetano, M., et al., M1- and M2-Type Macrophage Responses Are Predictive of Adverse Outcomes in Human Atherosclerosis. Frontiers in Immunology, 2016. 7.
    29. Rahman, K. and E.A. Fisher, Insights From Pre-Clinical and Clinical Studies on the Role of Innate Inflammation in Atherosclerosis Regression. Frontiers in Cardiovascular Medicine, 2018. 5.
    30. Shanmugam, N., et al., Atherosclerotic plaque regression: fact or fiction? Cardiovasc Drugs Ther, 2010. 24(4): p. 311-7.
    31. Moore, K.J., et al., Macrophage Trafficking, Inflammatory Resolution, and Genomics in Atherosclerosis: JACC Macrophage in CVD Series (Part 2). J Am Coll Cardiol, 2018. 72(18): p. 2181-2197.
    32. Cholesterol in the Prediction of Atherosclerotic Disease. Annals of Internal Medicine, 1979. 90(1): p. 85-91.
    33. Gordon, T., et al., High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med, 1977. 62(5): p. 707-14.
    34. Lund-Katz, S., et al., High density lipoprotein structure. Front Biosci, 2003. 8: p. d1044-54.
    35. Rosenson, R.S., et al., Cholesterol Efflux and Atheroprotection. Circulation, 2012. 125(15): p. 1905-1919.
    36. Pownall, H.J., et al., High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nat Rev Cardiol, 2021. 18(10): p. 712-723.
    37. Rothblat, G.H. and M.C. Phillips, High-density lipoprotein heterogeneity and function in reverse cholesterol transport. Current opinion in lipidology, 2010. 21(3): p. 229-238.
    38. Oram, J.F., HDL apolipoproteins and ABCA1: partners in the removal of excess cellular cholesterol. Arterioscler Thromb Vasc Biol, 2003. 23(5): p. 720-7.
    39. Calabresi, L. and G. Franceschini, Lecithin:Cholesterol Acyltransferase, High-Density Lipoproteins, and Atheroprotection in Humans. Trends in Cardiovascular Medicine, 2010. 20(2): p. 50-53.
    40. Rader, D.J., et al., The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. Journal of Lipid Research, 2009. 50: p. S189-S194.
    41. Santamarina-Fojo, S., et al., Hepatic Lipase, Lipoprotein Metabolism, and Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004. 24(10): p. 1750-1754.
    42. Röhrl, C. and H. Stangl, HDL endocytosis and resecretion. Biochimica et biophysica acta, 2013. 1831(11): p. 1626-1633.
    43. Trigatti, B., S. Covey, and A. Rizvi, Scavenger receptor class B type I in high-density lipoprotein metabolism, atherosclerosis and heart disease: lessons from gene-targeted mice. Biochemical Society Transactions, 2004. 32(1): p. 116-120.
    44. Thuahnai, S.T., et al., Scavenger Receptor Class B, Type I-mediated Uptake of Various Lipids into Cells: INFLUENCE OF THE NATURE OF THE DONOR PARTICLE INTERACTION WITH THE RECEPTOR *. Journal of Biological Chemistry, 2001. 276(47): p. 43801-43808.
    45. Webb, N.R., et al., The fate of HDL particles in vivo after SR-BI-mediated selective lipid uptake. Journal of Lipid Research, 2002. 43(11): p. 1890-1898.
    46. Risk Factors in Coronary Heart Disease. Annals of Internal Medicine, 1964. 61(5_Part_1): p. 888-899.
    47. Castelli, W.P., et al., Incidence of Coronary Heart Disease and Lipoprotein Cholesterol Levels: The Framingham Study. JAMA, 1986. 256(20): p. 2835-2838.
    48. Madsen, C.M., A. Varbo, and B.G. Nordestgaard, Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: two prospective cohort studies. European Heart Journal, 2017. 38(32): p. 2478-2486.
    49. Barter, P., The role of HDL-cholesterol in preventing atherosclerotic disease. European Heart Journal Supplements, 2005. 7(suppl_F): p. F4-F8.
    50. Barter, P.J., et al., Antiinflammatory Properties of HDL. Circulation Research, 2004. 95(8): p. 764-772.
    51. Mackness, B., et al., Paraoxonase-1 inhibits oxidised LDL-induced MCP-1 production by endothelial cells. Biochem Biophys Res Commun, 2004. 318(3): p. 680-3.
    52. Harrington, J.R., The Role of MCP-1 in Atherosclerosis. STEM CELLS, 2000. 18(1): p. 65-66.
    53. Clay, M.A., et al., Time sequence of the inhibition of endothelial adhesion molecule expression by reconstituted high density lipoproteins. Atherosclerosis, 2001. 157(1): p. 23-9.
    54. Nofer, J.R., et al., High density lipoprotein-associated lysosphingolipids reduce E-selectin expression in human endothelial cells. Biochem Biophys Res Commun, 2003. 310(1): p. 98-103.
    55. Moudry, R., M.O. Spycher, and J.E. Doran, Reconstituted high density lipoprotein modulates adherence of polymorphonuclear leukocytes to human endothelial cells. Shock, 1997. 7(3): p. 175-81.
    56. Lee, M.K., et al., High-density lipoprotein inhibits human M1 macrophage polarization through redistribution of caveolin-1. Br J Pharmacol, 2016. 173(4): p. 741-51.
    57. Sanson, M., E. Distel, and E.A. Fisher, HDL induces the expression of the M2 macrophage markers arginase 1 and Fizz-1 in a STAT6-dependent process. PLoS One, 2013. 8(8): p. e74676.
    58. Colin, S., et al., HDL does not influence the polarization of human monocytes toward an alternative phenotype. Int J Cardiol, 2014. 172(1): p. 179-84.
    59. Graham, J.M., et al., A novel method for the rapid separation of plasma lipoproteins using self-generating gradients of iodixanol. Atherosclerosis, 1996. 124(1): p. 125-135.
    60. Sun, H.Y., et al., Comparative proteomic profiling of plasma very-low-density and low-density lipoproteins. Clin Chim Acta, 2010. 411(5-6): p. 336-44.
    61. Diederich, W., et al., Apolipoprotein AI and HDL3 inhibit spreading of primary human monocytes through a mechanism that involves cholesterol depletion and regulation of CDC42. Atherosclerosis, 2001. 159(2): p. 313-324.
    62. Song, G.J., et al., SR-BI mediates high density lipoprotein (HDL)-induced anti-inflammatory effect in macrophages. Biochemical and Biophysical Research Communications, 2015. 457(1): p. 112-118.
    63. Aharoni, S., M. Aviram, and B. Fuhrman, Paraoxonase 1 (PON1) reduces macrophage inflammatory responses. Atherosclerosis, 2013. 228(2): p. 353-361.
    64. Pourcet, B. and I. Pineda-Torra, Transcriptional regulation of macrophage arginase 1 expression and its role in atherosclerosis. Trends in Cardiovascular Medicine, 2013. 23(5): p. 143-152.
    65. Munder, M., Arginase: an emerging key player in the mammalian immune system. British Journal of Pharmacology, 2009. 158(3): p. 638-651.
    66. Rath, M., et al., Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. Front Immunol, 2014. 5: p. 532.
    67. Pesce, J.T., et al., Arginase-1–Expressing Macrophages Suppress Th2 Cytokine–Driven Inflammation and Fibrosis. PLOS Pathogens, 2009. 5(4): p. e1000371.
    68. Khallou-Laschet, J., et al., Macrophage Plasticity in Experimental Atherosclerosis. PLOS ONE, 2010. 5(1): p. e8852.
    69. Wang, X.-P., et al., Arginase I enhances atherosclerotic plaque stabilization by inhibiting inflammation and promoting smooth muscle cell proliferation. European Heart Journal, 2013. 35(14): p. 911-919.
    70. Feig, J.E., et al., Reversal of Hyperlipidemia With a Genetic Switch Favorably Affects the Content and Inflammatory State of Macrophages in Atherosclerotic Plaques. Circulation, 2011. 123(9): p. 989-998.
    71. Feig, J.E., et al., HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells. Proceedings of the National Academy of Sciences, 2011. 108(17): p. 7166-7171.
    72. Pourcet, B., et al., LXRα Regulates Macrophage Arginase 1 Through PU.1 and Interferon Regulatory Factor 8. Circulation Research, 2011. 109(5): p. 492-501.
    73. Teupser, D., et al., Identification of Macrophage Arginase I as a New Candidate Gene of Atherosclerosis Resistance. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006. 26(2): p. 365-371.
    74. Tateyama, M., et al., CCR7+ myeloid dendritic cells together with CCR7+ T cells and CCR7+ macrophages invade CCL19+ nonnecrotic muscle fibers in inclusion body myositis. Journal of the Neurological Sciences, 2009. 279(1): p. 47-52.
    75. Kwiecień, I., et al., CD163 and CCR7 as markers for macrophage polarization in lung cancer microenvironment. Central-European journal of immunology, 2019. 44(4): p. 395-402.
    76. Bono, M.R., et al., The essential role of chemokines in the selective regulation of lymphocyte homing. Cytokine & Growth Factor Reviews, 2007. 18(1): p. 33-43.
    77. Woodland, D.L. and J.E. Kohlmeier, Migration, maintenance and recall of memory T cells in peripheral tissues. Nature Reviews Immunology, 2009. 9(3): p. 153-161.
    78. Llodrá, J., et al., Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proceedings of the National Academy of Sciences, 2004. 101(32): p. 11779-11784.
    79. Feig, J.E., et al., Statins Promote the Regression of Atherosclerosis via Activation of the CCR7-Dependent Emigration Pathway in Macrophages. PLOS ONE, 2011. 6(12): p. e28534.
    80. Trogan, E., et al., Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proceedings of the National Academy of Sciences, 2006. 103(10): p. 3781-3786.
    81. Potteaux, S., et al., Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe-/- mice during disease regression. The Journal of clinical investigation, 2011. 121(5): p. 2025-2036.
    82. Mueller, P.A., et al., Deletion of Macrophage Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Accelerates Atherosclerosis Regression and Increases C-C Chemokine Receptor Type 7 (CCR7) Expression in Plaque Macrophages. Circulation, 2018. 138(17): p. 1850-1863.
    83. Luchtefeld, M., et al., Chemokine Receptor 7 Knockout Attenuates Atherosclerotic Plaque Development. Circulation, 2010. 122(16): p. 1621-1628.
    84. Schieffer, B. and M. Luchtefeld, Emerging Role of Chemokine Receptor 7 in Atherosclerosis. Trends in Cardiovascular Medicine, 2011. 21(8): p. 211-216.
    85. Zernecke, A. and C. Weber, Chemokines in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014. 34(4): p. 742-750.
    86. Simons, K. and E. Ikonen, Functional rafts in cell membranes. Nature, 1997. 387(6633): p. 569-72.
    87. Zidovetzki, R. and I. Levitan, Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta, 2007. 1768(6): p. 1311-24.

    無法下載圖示 校內:2026-09-18公開
    校外:2026-09-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE