| 研究生: |
洪御恩 Hung, Yu-En |
|---|---|
| 論文名稱: |
探討高密度脂蛋白在M1和M2巨噬細胞上的動脈粥狀硬化保護作用 Investigation of Athero-protective Effects of High-density Lipoprotein on M1 and M2 Macrophages |
| 指導教授: |
林韋伶
Lin, Wei-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 動脈粥狀硬化 、巨噬細胞極化 、高密度脂蛋白 、膽固醇排出 、移動能力 |
| 外文關鍵詞: | Atherosclerosis, macrophage polarization, HDLs, cholesterol efflux, migration |
| 相關次數: | 點閱:114 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
心血管疾病是世界上造成死亡的主要原因之一,而動脈粥狀硬化是潛在的病理機制。動脈粥狀硬化是一種慢性發炎疾病,主要是由於大量的低密度脂蛋白(low-density lipoproteins, LDLs)累積在血管中,而巨噬細胞吞噬LDLs後,會形成泡沫細胞引發不良的免疫反應。因此,巨噬細胞在動脈粥狀硬化中扮演重要的角色,其可再進一步分為M1和M2兩種型態。促進發炎的M1巨噬細胞主要位於斑塊肩部和脂質核心,被認為會使斑塊較不穩定容易破裂並促進血栓形成;相比之下,抗發炎的 M2巨噬細胞大多出現在較穩定的區域,主要會參與動脈粥狀硬化的消退。此外,已知高密度脂蛋白(high-density lipoproteins, HDLs)會透過促進巨噬細胞中膽固醇的排除以及抑制發炎反應和LDLs的氧化來避免動脈粥狀硬化。然而目前較少研究針對HDLs對已分化之M1和M2巨噬細胞的影響。因此在這項研究中,我們想要確定HDLs對M1和M2巨噬細胞是否具有抑制動脈粥狀硬化的能力以及其參與的機制。首先,我們分離人類周邊血液單核細胞並分別分化成M1(LPS+IFN-γ)或M2(IL-4+IL-13)巨噬細胞。M1 巨噬細胞會表現出較細長的形態,並且高表達腫瘤壞死因子α (tumor necrosis factor α, TNF-α)、C-C趨化因子受體7 (C-C motif chemokine receptor 7, CCR7)和C-C趨化因子配體19 (C-C motif chemokine ligand 19, CCL19)。而樹突狀的M2巨噬細胞則是會表達較高的CD206、CCL13、CCL18和精氨酸酶1 (arginase 1, ARG-1)。我們的研究發現,在M1巨噬細胞中,HDLs可透過抑制促進發炎的CCL19及TNF-α表達,並誘導M2標誌物ARG-1表現來發揮抗發炎作用。而在M2巨噬細胞中,HDLs會增加CCR7和CCL18的表達,並且其抗氧化力、膽固醇排出能力和移動能力也都有顯著提升。因此,本研究發現HDLs在M1和M2巨噬細胞中會透過不同機制抑制動脈粥狀硬化。
Cardiovascular disease is the leading cause of death in the world, and atherosclerosis is the underlying mechanism. Atherosclerosis is a chronic inflammatory disease caused by an accumulation of low-density lipoproteins (LDLs) and maladaptive immune responses arising from macrophage-derived foam cells. Macrophages, which play an important role in atherosclerosis, can be further divided into M1- and M2-type. Pro-inflammatory M1 macrophages, predominantly located in plaque shoulder and lipid core, are thought to trigger plaque destabilization and promote thrombosis. In contrast, anti-inflammatory M2 macrophages are found in more stable zones, where these cells are involved in the regression of atherosclerosis. In addition, high-density lipoproteins (HDLs) are known to protect against atherosclerosis by promoting macrophage cholesterol efflux while inhibiting inflammatory responses and LDLs oxidation. In this study, we intend to determine the athero-protective effects of HDLs on M1 and M2 macrophages. First, human peripheral blood mononuclear cells were differentiated into M1 (LPS+IFN-γ) or M2 (IL-4+IL-13) macrophages, respectively. M1 macrophages, which showed elongated morphology, have increased mRNA expression of tumor necrosis factor-α (TNF-α), C-C motif chemokine receptor 7 (CCR7), and C-C motif chemokine ligand 19 (CCL19). While dendritic-like M2 macrophages have the elevation of CD206, CCL13, CCL18, and arginase 1 (ARG-1). HDLs exert anti-inflammatory effects on M1 macrophages by suppressing M1 markers, CCL19 and TNF-α, while inducing M2 marker ARG-1. On the other hand, CCR7 and CCL18 were upregulated in M2 macrophages under HDLs treatment. Additionally, the antioxidant capacity, cholesterol efflux ability, and CCR7-mediated transmigration of M2 macrophages were upregulated by HDLs. Therefore, HDLs indeed exert athero-protective effects on M1 and M2 macrophages via different mechanisms.
1. Benjamin, E.J., et al., Heart Disease and Stroke Statistics'2017 Update: A Report from the American Heart Association. Circulation, 2017. 135(10): p. e146-e603.
2. Libby, P., Inflammation in atherosclerosis. Nature, 2002. 420(6917): p. 868-74.
3. Ross, R., Atherosclerosis — An Inflammatory Disease. New England Journal of Medicine, 1999. 340(2): p. 115-126.
4. Moore, K.J., F.J. Sheedy, and E.A. Fisher, Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol, 2013. 13(10): p. 709-21.
5. Berliner, J.A., et al., Atherosclerosis: Basic Mechanisms. Circulation, 1995. 91(9): p. 2488-2496.
6. Davignon, J. and P. Ganz, Role of Endothelial Dysfunction in Atherosclerosis. Circulation, 2004. 109(23_suppl_1): p. III-27-III-32.
7. Hajjar, D.P. and A.M. Gotto, Biological Relevance of Inflammation and Oxidative Stress in the Pathogenesis of Arterial Diseases. The American Journal of Pathology, 2013. 182(5): p. 1474-1481.
8. Williams, K.J. and I. Tabas, The Response-to-Retention Hypothesis of Early Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995. 15(5): p. 551-561.
9. Mazzone, T., A. Chait, and J. Plutzky, Cardiovascular disease risk in type 2 diabetes mellitus: insights from mechanistic studies. Lancet, 2008. 371(9626): p. 1800-9.
10. Kim, K.-W., S. Ivanov, and J.W. Williams, Monocyte Recruitment, Specification, and Function in Atherosclerosis. Cells, 2021. 10(1): p. 15.
11. Tabas, I. and K.E. Bornfeldt, Macrophage Phenotype and Function in Different Stages of Atherosclerosis. Circulation Research, 2016. 118(4): p. 653-667.
12. Anlamlert, W., Y. Lenbury, and J. Bell, Modeling fibrous cap formation in atherosclerotic plaque development: stability and oscillatory behavior. Advances in Difference Equations, 2017. 2017(1): p. 195.
13. Stary, H.C., et al., A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation, 1995. 92(5): p. 1355-74.
14. Barrett, T.J., Macrophages in Atherosclerosis Regression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020. 40(1): p. 20-33.
15. Atri, C., F.Z. Guerfali, and D. Laouini, Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. Int J Mol Sci, 2018. 19(6).
16. Sica, A. and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas. J Clin Invest, 2012. 122(3): p. 787-95.
17. Martinez, F.O., et al., Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression. The Journal of Immunology, 2006. 177(10): p. 7303-7311.
18. Lu, C.-H., et al., Involvement of M1 Macrophage Polarization in Endosomal Toll-Like Receptors Activated Psoriatic Inflammation. Mediators of inflammation, 2018. 2018: p. 3523642-3523642.
19. Tedesco, S., et al., Phenotypic activation and pharmacological outcomes of spontaneously differentiated human monocyte-derived macrophages. Immunobiology, 2015. 220(5): p. 545-54.
20. Biswas, S.K. and A. Mantovani, Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol, 2010. 11(10): p. 889-96.
21. Italiani, P. and D. Boraschi, From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Frontiers in Immunology, 2014. 5.
22. Saqib, U., et al., Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget, 2018. 9(25): p. 17937-17950.
23. Lin, P., et al., Macrophage Plasticity and Atherosclerosis Therapy. Front Mol Biosci, 2021. 8: p. 679797.
24. Robbins, C.S., et al., Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nature Medicine, 2013. 19(9): p. 1166-1172.
25. Lahmar, Q., et al., Tissue-resident versus monocyte-derived macrophages in the tumor microenvironment. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 2016. 1865(1): p. 23-34.
26. Honold, L. and M. Nahrendorf, Resident and Monocyte-Derived Macrophages in Cardiovascular Disease. Circ Res, 2018. 122(1): p. 113-127.
27. Stöger, J.L., et al., Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis, 2012. 225(2): p. 461-468.
28. de Gaetano, M., et al., M1- and M2-Type Macrophage Responses Are Predictive of Adverse Outcomes in Human Atherosclerosis. Frontiers in Immunology, 2016. 7.
29. Rahman, K. and E.A. Fisher, Insights From Pre-Clinical and Clinical Studies on the Role of Innate Inflammation in Atherosclerosis Regression. Frontiers in Cardiovascular Medicine, 2018. 5.
30. Shanmugam, N., et al., Atherosclerotic plaque regression: fact or fiction? Cardiovasc Drugs Ther, 2010. 24(4): p. 311-7.
31. Moore, K.J., et al., Macrophage Trafficking, Inflammatory Resolution, and Genomics in Atherosclerosis: JACC Macrophage in CVD Series (Part 2). J Am Coll Cardiol, 2018. 72(18): p. 2181-2197.
32. Cholesterol in the Prediction of Atherosclerotic Disease. Annals of Internal Medicine, 1979. 90(1): p. 85-91.
33. Gordon, T., et al., High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med, 1977. 62(5): p. 707-14.
34. Lund-Katz, S., et al., High density lipoprotein structure. Front Biosci, 2003. 8: p. d1044-54.
35. Rosenson, R.S., et al., Cholesterol Efflux and Atheroprotection. Circulation, 2012. 125(15): p. 1905-1919.
36. Pownall, H.J., et al., High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nat Rev Cardiol, 2021. 18(10): p. 712-723.
37. Rothblat, G.H. and M.C. Phillips, High-density lipoprotein heterogeneity and function in reverse cholesterol transport. Current opinion in lipidology, 2010. 21(3): p. 229-238.
38. Oram, J.F., HDL apolipoproteins and ABCA1: partners in the removal of excess cellular cholesterol. Arterioscler Thromb Vasc Biol, 2003. 23(5): p. 720-7.
39. Calabresi, L. and G. Franceschini, Lecithin:Cholesterol Acyltransferase, High-Density Lipoproteins, and Atheroprotection in Humans. Trends in Cardiovascular Medicine, 2010. 20(2): p. 50-53.
40. Rader, D.J., et al., The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. Journal of Lipid Research, 2009. 50: p. S189-S194.
41. Santamarina-Fojo, S., et al., Hepatic Lipase, Lipoprotein Metabolism, and Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004. 24(10): p. 1750-1754.
42. Röhrl, C. and H. Stangl, HDL endocytosis and resecretion. Biochimica et biophysica acta, 2013. 1831(11): p. 1626-1633.
43. Trigatti, B., S. Covey, and A. Rizvi, Scavenger receptor class B type I in high-density lipoprotein metabolism, atherosclerosis and heart disease: lessons from gene-targeted mice. Biochemical Society Transactions, 2004. 32(1): p. 116-120.
44. Thuahnai, S.T., et al., Scavenger Receptor Class B, Type I-mediated Uptake of Various Lipids into Cells: INFLUENCE OF THE NATURE OF THE DONOR PARTICLE INTERACTION WITH THE RECEPTOR *. Journal of Biological Chemistry, 2001. 276(47): p. 43801-43808.
45. Webb, N.R., et al., The fate of HDL particles in vivo after SR-BI-mediated selective lipid uptake. Journal of Lipid Research, 2002. 43(11): p. 1890-1898.
46. Risk Factors in Coronary Heart Disease. Annals of Internal Medicine, 1964. 61(5_Part_1): p. 888-899.
47. Castelli, W.P., et al., Incidence of Coronary Heart Disease and Lipoprotein Cholesterol Levels: The Framingham Study. JAMA, 1986. 256(20): p. 2835-2838.
48. Madsen, C.M., A. Varbo, and B.G. Nordestgaard, Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: two prospective cohort studies. European Heart Journal, 2017. 38(32): p. 2478-2486.
49. Barter, P., The role of HDL-cholesterol in preventing atherosclerotic disease. European Heart Journal Supplements, 2005. 7(suppl_F): p. F4-F8.
50. Barter, P.J., et al., Antiinflammatory Properties of HDL. Circulation Research, 2004. 95(8): p. 764-772.
51. Mackness, B., et al., Paraoxonase-1 inhibits oxidised LDL-induced MCP-1 production by endothelial cells. Biochem Biophys Res Commun, 2004. 318(3): p. 680-3.
52. Harrington, J.R., The Role of MCP-1 in Atherosclerosis. STEM CELLS, 2000. 18(1): p. 65-66.
53. Clay, M.A., et al., Time sequence of the inhibition of endothelial adhesion molecule expression by reconstituted high density lipoproteins. Atherosclerosis, 2001. 157(1): p. 23-9.
54. Nofer, J.R., et al., High density lipoprotein-associated lysosphingolipids reduce E-selectin expression in human endothelial cells. Biochem Biophys Res Commun, 2003. 310(1): p. 98-103.
55. Moudry, R., M.O. Spycher, and J.E. Doran, Reconstituted high density lipoprotein modulates adherence of polymorphonuclear leukocytes to human endothelial cells. Shock, 1997. 7(3): p. 175-81.
56. Lee, M.K., et al., High-density lipoprotein inhibits human M1 macrophage polarization through redistribution of caveolin-1. Br J Pharmacol, 2016. 173(4): p. 741-51.
57. Sanson, M., E. Distel, and E.A. Fisher, HDL induces the expression of the M2 macrophage markers arginase 1 and Fizz-1 in a STAT6-dependent process. PLoS One, 2013. 8(8): p. e74676.
58. Colin, S., et al., HDL does not influence the polarization of human monocytes toward an alternative phenotype. Int J Cardiol, 2014. 172(1): p. 179-84.
59. Graham, J.M., et al., A novel method for the rapid separation of plasma lipoproteins using self-generating gradients of iodixanol. Atherosclerosis, 1996. 124(1): p. 125-135.
60. Sun, H.Y., et al., Comparative proteomic profiling of plasma very-low-density and low-density lipoproteins. Clin Chim Acta, 2010. 411(5-6): p. 336-44.
61. Diederich, W., et al., Apolipoprotein AI and HDL3 inhibit spreading of primary human monocytes through a mechanism that involves cholesterol depletion and regulation of CDC42. Atherosclerosis, 2001. 159(2): p. 313-324.
62. Song, G.J., et al., SR-BI mediates high density lipoprotein (HDL)-induced anti-inflammatory effect in macrophages. Biochemical and Biophysical Research Communications, 2015. 457(1): p. 112-118.
63. Aharoni, S., M. Aviram, and B. Fuhrman, Paraoxonase 1 (PON1) reduces macrophage inflammatory responses. Atherosclerosis, 2013. 228(2): p. 353-361.
64. Pourcet, B. and I. Pineda-Torra, Transcriptional regulation of macrophage arginase 1 expression and its role in atherosclerosis. Trends in Cardiovascular Medicine, 2013. 23(5): p. 143-152.
65. Munder, M., Arginase: an emerging key player in the mammalian immune system. British Journal of Pharmacology, 2009. 158(3): p. 638-651.
66. Rath, M., et al., Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. Front Immunol, 2014. 5: p. 532.
67. Pesce, J.T., et al., Arginase-1–Expressing Macrophages Suppress Th2 Cytokine–Driven Inflammation and Fibrosis. PLOS Pathogens, 2009. 5(4): p. e1000371.
68. Khallou-Laschet, J., et al., Macrophage Plasticity in Experimental Atherosclerosis. PLOS ONE, 2010. 5(1): p. e8852.
69. Wang, X.-P., et al., Arginase I enhances atherosclerotic plaque stabilization by inhibiting inflammation and promoting smooth muscle cell proliferation. European Heart Journal, 2013. 35(14): p. 911-919.
70. Feig, J.E., et al., Reversal of Hyperlipidemia With a Genetic Switch Favorably Affects the Content and Inflammatory State of Macrophages in Atherosclerotic Plaques. Circulation, 2011. 123(9): p. 989-998.
71. Feig, J.E., et al., HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells. Proceedings of the National Academy of Sciences, 2011. 108(17): p. 7166-7171.
72. Pourcet, B., et al., LXRα Regulates Macrophage Arginase 1 Through PU.1 and Interferon Regulatory Factor 8. Circulation Research, 2011. 109(5): p. 492-501.
73. Teupser, D., et al., Identification of Macrophage Arginase I as a New Candidate Gene of Atherosclerosis Resistance. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006. 26(2): p. 365-371.
74. Tateyama, M., et al., CCR7+ myeloid dendritic cells together with CCR7+ T cells and CCR7+ macrophages invade CCL19+ nonnecrotic muscle fibers in inclusion body myositis. Journal of the Neurological Sciences, 2009. 279(1): p. 47-52.
75. Kwiecień, I., et al., CD163 and CCR7 as markers for macrophage polarization in lung cancer microenvironment. Central-European journal of immunology, 2019. 44(4): p. 395-402.
76. Bono, M.R., et al., The essential role of chemokines in the selective regulation of lymphocyte homing. Cytokine & Growth Factor Reviews, 2007. 18(1): p. 33-43.
77. Woodland, D.L. and J.E. Kohlmeier, Migration, maintenance and recall of memory T cells in peripheral tissues. Nature Reviews Immunology, 2009. 9(3): p. 153-161.
78. Llodrá, J., et al., Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proceedings of the National Academy of Sciences, 2004. 101(32): p. 11779-11784.
79. Feig, J.E., et al., Statins Promote the Regression of Atherosclerosis via Activation of the CCR7-Dependent Emigration Pathway in Macrophages. PLOS ONE, 2011. 6(12): p. e28534.
80. Trogan, E., et al., Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proceedings of the National Academy of Sciences, 2006. 103(10): p. 3781-3786.
81. Potteaux, S., et al., Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe-/- mice during disease regression. The Journal of clinical investigation, 2011. 121(5): p. 2025-2036.
82. Mueller, P.A., et al., Deletion of Macrophage Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Accelerates Atherosclerosis Regression and Increases C-C Chemokine Receptor Type 7 (CCR7) Expression in Plaque Macrophages. Circulation, 2018. 138(17): p. 1850-1863.
83. Luchtefeld, M., et al., Chemokine Receptor 7 Knockout Attenuates Atherosclerotic Plaque Development. Circulation, 2010. 122(16): p. 1621-1628.
84. Schieffer, B. and M. Luchtefeld, Emerging Role of Chemokine Receptor 7 in Atherosclerosis. Trends in Cardiovascular Medicine, 2011. 21(8): p. 211-216.
85. Zernecke, A. and C. Weber, Chemokines in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014. 34(4): p. 742-750.
86. Simons, K. and E. Ikonen, Functional rafts in cell membranes. Nature, 1997. 387(6633): p. 569-72.
87. Zidovetzki, R. and I. Levitan, Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta, 2007. 1768(6): p. 1311-24.
校內:2026-09-18公開