簡易檢索 / 詳目顯示

研究生: 黃鐘億
Huang, Chung-Yi
論文名稱: 具有低溫成長氮化鎵/氮化鋁插入層之氮化鎵光偵測器光電特性比較之研究
Comparison of Optoelectronic Characteristics of GaN-Based P-I-N Photodiodes with Low-Temperature-Grown GaN/AlN interlayer(s)
指導教授: 賴韋志
Lai, Wei-Chih
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 69
中文關鍵詞: 鑑別率光響應氮化鋁氮化鎵光偵測器化學氣相沉積p-i-n
外文關鍵詞: Rejection ratio, Responsivity, AlN, GaN, photodiode, p-i-n, MOCVD
相關次數: 點閱:63下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文針對氮化鎵材料之p-i-n光偵測器的相關製作與研究,光偵測器的結構包括有傳統p-i-n結構和在吸收層中加入低溫成長氮化鎵或氮化鋁的插入層之特性比較與討論。
      在吸收層中間加入LT-GaN 的結構中,利用低溫成長的材料在其內部存在的缺陷能階來改變元件特性。存在這些缺陷能階中被捕捉的載子一旦被激發出來,可以造崩潰效應。因此造成內部增益的產生,使得元件有電流增益及光響應增加的現象。
      在吸收層中間加入了LT-AlN的結構中,我們利用較大能隙的氮化鋁取代氮化鎵,而氮化鋁的高能隙特性可以作為電子的阻擋層。元件的暗電流可以有效的被抑制。在-40V逆偏電壓下和LT-GaN的結構相比暗電流小了3~4個數量級。利用LT-AlN的結構之元件,則可以有效的減少在長波長部分的光響應度,紫外光對可見光波段之鑑別率在高逆偏電壓下和LT-GaN的結構相比提高約2個數量級。暗電流的減少以及鑑別率的改善,是由於LT-AlN的材料具有較大的位能障所導致的。

    We aims at fabricating and characterizing of GaN-based p-i-n ultraviolet photodetectors in the thesis. We have designed two variations, including p-i-n structure with low-temperature (LT)-GaN and LT-AlN interlayer(s) at middle of the absorption layer.
    In the p-i-n structure with LT-GaN interlayer(s), it was found that the responsivity of the photodiode with LT-GaN interlayer can be enhanced at a small electric field due to the carrier multiplication effect. The carrier multiplication effect take place by the electrons collision with the carriers trapped in the defect level of LT-GaN. There might exist an internal gain, and the device has the increasing current gain with increasing reverse bias.
    Comparing with the p-i-n structure with/without LT-GaN interlayer(s), it was found the we achieved smaller dark current and enhanced UV to visible rejection ratio from the structure with LT-AlN interlayer. The dark leakage current from the PDs with LT-AlN interlayer was shown to be about three orders of magnitude smaller than that for the traditional structure. The measured responsivity and UV to visible rejection ratio are 0.1 A/W and 1.25×102 at reverse bias of -40V. The rejection ratio is about two order magnitude lager than the structure with LT-GaN. This result can be attributed to the thicker and higher potential barrier of LT-AlN interlayer.

    中 文 摘 要 I 英 文 摘 要 II 致 謝 III 目 錄 IV 表目錄 VII 圖目錄 VIII 第1章 導論 1 1-1 簡介 1 1-2 研究背景與論文架構 4 第2章 光檢測器基本理論 6 2-1 基本運作原理 6 2-2 照光吸收機制 8 2-3 暗電流機制 10 2-3-1 擴散電流 10 2-3-2 產生-複合電流 11 2-3-3 穿隧電流 11 2-4 特性參數 13 2-4-1 量子效率(Quantum Efficiency, η) 13 2-4-2 光響應度(Responsivity, R) 14 2-4-3 偵測率(Detectivity, D*) 15 2-4-4 響應速度(Response Speed ) 16 第3章 元件製作及量測儀器架設 21 3-1 MOCVD磊晶 (Metal Organic Chemical Vapor Deposition) 21 3-2 製程 24 3-3 光響應量測光路架設 27 第4章 結果與討論 35 4-1 有/無 LT-GaN穿插層的光偵測器 35 4-1-1 A1、A2電特性比較 35 4-1-2 A1、A2光響應度 37 4-1-3 結語 39 4-2 多層 LT-GaN穿插層的光偵測器 40 4-2-1 A2~A5電特性比較 40 4-2-2 A2~A5電流增益及光響應度的比較 41 4-2-3 A1~A5鑑別率(Rejection Ratio)比較 42 4-2-4 結語 43 4-3 具LT-AlN穿插層的光偵測器 44 4-3-1 氮化鋁(AlN)材料簡介 44 4-3-2 A6 之電流電壓特性、光響應度 45 4-3-3 A1、A2、A6電流電壓特性比較 46 4-3-4 A1、A2、A6光響應度、鑑別率比較 47 4-3-5 結語 48 第5章 結論與未來展望 61 參考文獻 64

    [1].S. Nakamura, M. Senoh, N. Iwasa and S. C. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett., Vol. 67, pp. 1868-1870, (1995).
    [2].S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-Power, Long-Lifetime InGaN Multi - Quantum - Well - Structure Laser Diodes,” Jpn. J. Appl. Phys., vol. 36, pp. L1059-L1061, (1997).
    [3].Hirano, C. Pernot, M. Iwaya, T. Detchprohm, H. Amano, and I. Akasaki, “Demonstration of Flame Detection in Room Light Background by Solar-Blind AlGaN PIN Photodiode,” Phys. Stat. Sol. (a), vol. 188, pp. 293-296, (2001).
    [4].C. J. Collins, T. Li, D. J. H. Lambert, M. M. Wong, R. D. Dupuis, and J. C. Campbell, “Selective regrowth of Al0.30Ga0.70N p-i-n photodiodes,” Appl. Phys. Lett., Vol. 77, pp. 2810-2812, (2000).
    [5].M.A. Khan, M.S. Shur, J.N. Kuzunia, Q. Chen, J. Burm and W. Schaff , “Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300 °C,” Appl. Phys. Lett., Vol.66 , pp.1083, (1995).
    [6].Aktas, Z.F. Fan, S.N. Mmohammad, A.E. Botchkarev, and H. Morkoc,” High temperature characteristics of AlGaN/GaN modulation doped field-effect transistors, ” Appl. Phys. Lett., Vol.69, pp.3872, (1996).
    [7].M.A. Khan, A.R. Bhattarai, J.N. Kkuznia, and D.T. Olson, “High electron mobility transistor based on a GaN-AlxGa1−xN heterojunction,” Appl. Phys. Lett., Vol.63, pp.1214, (1993).
    [8].M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van hove, M. Blasingame, L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers,” Appl. Phys. Lett., Vol. 60, pp.2917, (1992).
    [9].D. Walker, X. Zhang, A. Saxler, PP. Kung, J Xu, and M. Razeghi, “AlxGa1–xN (0≦x≦1) ultraviolet photodetectors grown on sapphire by metal-organic chemical-vapor deposition,” Appl. Phys. Lett., Vol.70, pp.949, (1997).
    [10].J. A. Garrido, E. Monroy, I. Izpura, and E. Munoz, “Photoconductive gain modelling of GaN photodetectors,” Semicond. Sci. Technol., Vol13, pp.563, (1998).
    [11].E. Monroy, T. Palacios, O. Hainaut, F. Omnes, F. Celle, J. F. Hochedez, “Photoconductive gain modelling of GaN photodetectors,” Appl. Phys. Lett., Vol. 80, pp. 3198, (2000).
    [12].M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van hove, M. Blasingame, L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers,” Appl. Phys. Lett., Vol. 60, pp.2917, (1992).
    [13].D. Walker, X. Zhang, PP. Kung, A. Saxler, S. Javadpour, J. Xu, M. Razeghi, “AlGaN ultraviolet photoconductors grown on sapphire,” Appl. Phys. Lett., Vol.68 , pp.2100 , (1996).
    [14].Q. Chen, M.A. Khan, C.J. Sun and J.W. Yang, “Visible-blind ultraviolet photodetectors based on GaN p-n junctions,” Electron. Lett. Vol.31, pp.1781, (1995).
    [15].E. Monroy, E. Munoz, F. J. Sanchez, F. Calle, E. Calleja, B. Beaumont, PP. Gibart , J.A. Munoz , F. Cusso , “High-performance GaN p-n junction photodetectors for solar ultraviolet applications,” Semicond. Sci. Technol. Vol.13, pp.1042, (1998).
    [16].Q. Chen, J.W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M.Z. Anwar, M. Asi Khan, D. Kuksenkov, H. Temkin, “Schottky barrier detectors on GaN for visible–blind ultraviolet detection,” Appl. Phys. Lett., Vol.70 , pp.2277 , (1997).
    [17].E. Monroy, F. Calle, E. Munoz, F. Omnes, PP. Gibart, J.A. Munoz, “AlxGa1–xN:Si Schottky barrier photodiodes with fast response and high detectivity,” Appl. Phys. Lett., Vol.73 , pp.2146 , (1998).
    [18].G. Parish, S. Keller, PP. Kozodoy, J. A. Ibbetson, H. Marchand, PP. T. Fini, S. B. Fleischer, S. PP. DenBaars, and U. K. Mishra, “High performance (Al,Ga)N-based solar-blind ultraviolet p-i-n detectors on laterallyepitaxially overgrown GaN,” Appl. Phys. Lett., vol. 75, pp.247-249, (1999).
    [19].E. Monroy, M. Hamilton, D. Walker, PP. Kung, F. J. Sánchez, and M. Razeghi, “High quality visible-blind algan p-i-n photodiodes,” Appl.Phys.Lett., vol. 74, pp. 1171-1173, (1999).
    [20].Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D.Kuksenkov, and H. Temkin, “Low noise p- -n GaN ultraviolet photodetectors,” Appl. Phys. Lett., vol.71, pp. 2334-2336, (1997).
    [21].D. Walker, E. Monroy, PP. Kung, J. Wu, M. Hamilton, F.J. Sanchez, J. Diaz, M. Razeghi, “High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN,” Appl. Phys. Lett.,Vol.74, pp.762 , (1999).
    [22].E. Monroy, F. Calle, E. Mun˜oz, F. Omne`s, “AlGaN metal-semiconductor - metal photodiodes,” Appl. Phys. Lett., Vol.74, pp.3401, (1999).
    [23].M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano, and I. Akasaki, “Reduction of Etch Pit Density in Organometallic Vapor Phase Epitaxy-Grown GaN on Sapphire by Insertion of a Low-Temperature-Deposited Buffer Layer between High-Temperature-Grown GaN,” Jpn. J. Appl. Phys., vol. 37, pp. 316-318, (1998).
    [24].E. D. Bourret-Courchesne, S. Kellermann, K. M. Yu, M. Benamara, Z. Liliental-Weber, J. Washburn, S. J. C. Irvine, and A. Stafford, “Reduction of threading dislocation density in GaN using an intermediate temperature interlayer,” Appl. Phys. Lett., Vol. 77, pp. 3562-3564, (2000).
    [25].S. J. Chang, C. L. Yu, C. H. Chen, PP. C. Chang, and K. C. Huang, “Nitride-based ultraviolet metal-semiconductor-metal photodetectors with low-temperature GaN cap layers and Ir/Pt contact electrodes,” J. Vac. Sci. Technol. A, vol. 24, pp. 637–640, May/Jun. (2006).
    [26].M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi, and J. M. Tsai, “GaN Schottky barrier photodetectors with a low-temperature GaN cap layer,” Appl. Phys. Lett., Vol. 82, ppp. 2913-2915, (2003).
    [27].S. M. Sze, Semiconductor Device Physics and Technology, pp.278, (1985).
    [28].S. M. Sze, D. J. Coleman, JR. and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electronics, Vol. 14, pp. 1209, (1971).
    [29].Schubert F. Soares, “Photoconductive Gain in a Schottky Barrier Photodiode,” Japp. J. Appl. Phys. Vol.31, pp. 210, (1992).
    [30].J. C. Campbell, AT&T Bell Lab. Technical Memorendum (unpublished).
    [31].S. M. Sze, “Semiconductor Devices Physics and Technology”, Ch.3
    [32].Jasprit Singh, “Semiconductor Optoelectronics Physics and Technology, Ch. 6 Semiconductor junction theory,” pp. 286.
    [33].G. Dearnaley, J. H. Freeman, R. S. Nelson, Stephen, “Ion-Implantation, Ch. 5 Applications to semiconductors, ” pp. 561.
    [34].S. R. Forrest, M. DiDomenico, Jr., R. G. Smith, H. J. Stocker, “Evidence for tunneling in reverse-biased III-V photodetector diodes,” Appl. Phys. Lett., Vol. 36, pp.580 , (1980).
    [35].S. R. Forrest, “Performance of InxGa1-xAsyP1-y photodiodes with dark current limited by diffusion, generation recombination, and tunneling,” Journal of quantum electronics, Vol.17, pp.217- 226, (1981).
    [36].Katz ,V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Anisotropy in detectivity of GaN Schottky ultraviolet detectors: Comparing lateral and vertical geometry,” Appl. Phys. Lett., Vol.80, pp.347, (2002).
    [37].L. S. Yeh, M. L. Lee, J. K. Sheu, M. G. Chen, C. J. Kao, G. C. Chi, S. J. Chang, and Y. K. Su, “Visible–blind GaN p–i–n photodiodes with an Al0.12Ga0.88N/GaN superlattice structure,” Solid-State Electron., vol. 47, pp. 873-878, (2003)
    [38].J.-W. Shi, Y.-H. Chen, K. G. Gan, Y. J. Chiu, John. E. Bowers, M.-C. Tien, T.-M. Liu, and C.-K. Sun, “Nonlinear Behaviors of Low-Temperature-Grown GaAs-Based Photodetectors Around 1.3-μm Telecommunication Wavelength,” IEEE Photon. Tech. Lett., vol.16, pp.242-244, (2004).
    [39].C.-K. Sun, Y.-Hung Chen, J.-W. Shi, Y.-J. Chiu, K. G. Gan, and J. E. Bowers, “Electron relaxation and transport dynamics in low-temperature-grown GaAs under 1eV optical excitation,” Appl. Phys. Lett., vol.83, pp.911-913, (2003).
    [40].H.C. Casey Jr., G.G. Fountain, R.G. Alley, B.P. Keller, S.P. DenBaars, Appl. Phys. Lett. Vol. 68, pp.1850. (1996)
    [41].B. Gaffey, L.J. Guido, X.W. Wang, T.P. Ma, IEEE Trans. Electron Dev. Vol.48, pp.458. (2001)
    [42].F. Ren, M. Hong, S.N.G. Chu, M.A. Marcus, M.J. Schurman, A. Baca, S.J. Pearton, C.R. Abernathy, Appl. Phys. Lett. Vol. 73, pp.3893 (1998)
    [43].A.T. Collins, E.C. Lightowlers, P.J. Dean, Phys. Rev. vol.158, pp.833. (1967)
    [44].J.C. Zolper, D.J. Rieger, A.G. Baca, S.J. Pearton, J.W. Lee, R.A. Stall, Appl. Phys. Lett. Vol.69, pp.538. (1996)
    [45].C.L. Yu, S.J. Chang, P.C. Chang, Y.C. Lin, C.T. Lee, “Nitride-based ultraviolet Schottky barrier photodetectors with LT-AlN cap layers,” Supperlattices and Microstructures, vol. 40, pp.470-475, (2006)

    下載圖示 校內:2010-07-26公開
    校外:2010-07-26公開
    QR CODE