| 研究生: |
李承峻 Li, Cheng Jun |
|---|---|
| 論文名稱: |
Gamma型史特林引擎之移動再生器設計參數優化研究 Optimization analysis of the displacer design parameters for a Gamma-type Stirling engine |
| 指導教授: |
陳文立
Chen, Wen-Lih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | Gamma型史特林引擎 、CFD模擬 、田口優化方法 |
| 外文關鍵詞: | Gamma type Stirling engine, CFD, Taguchi method |
| 相關次數: | 點閱:42 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此研究探討Gamma型史特林引擎之移動再生器幾何參數對引擎效能之影響,並利用CFD模擬分析與田口優化方法找出最佳參數配置。本研究選定四個控制因子,分別為移動再生器孔洞面積與上下板總面積的比例、移動再生器的孔洞數量、引擎冷熱端溫度差與引擎運轉轉速,並依序低、中、高排序設定控制因子的水準 : 移動再生器孔洞面積與上下板總面積的比例為14%、17%與20%、移動再生器的孔洞數量為75、105與140個、引擎冷熱端溫度差為200K、300K與400K、引擎運轉轉速為60、180、300 rpm。利用L9直交表將上述控制因子與水準進行排序,即可獲得簡化過的九組試驗,將九組試驗進行CFD模擬分析,並計算輸出淨功率、熱效率與再生效率。由田口法訊噪比分析可預測輸出淨功率的最佳配置為面積比14%、孔洞數量75個、引擎冷熱端溫差400K與引擎運轉轉速為300 rpm,且預測最佳輸出淨功率為66.599W;熱效率的最佳配置為面積比20%、孔洞數量140個、引擎冷熱端溫差400K與引擎運轉轉速為60 rpm,預測最佳熱效率為18.333 %;再生效率的最佳配置為面積比14%、孔洞數量75個、引擎冷熱端溫差400K與引擎運轉轉速為60 rpm,預測最佳再生效率為58.553 %。本研究將最佳輸出淨功率之配置進行CFD模擬分析,可得輸出淨功率為65.368 W、熱效率為12.506 %與再生效率為51.892 %,其結果與田口法訊噪比分析之誤差分別為1.8%、6%與2.3%。
本研究結合CFD模擬與田口實驗設計法進行史特林引擎之優化分析,不僅有效降低傳統實驗所需之成本與時間,也可以深入探討不同幾何設計參數對於引擎內部熱傳機制、流場結構與溫度分布等物理行為,進而分析其對優化目標(如輸出淨功率、熱效率與再生效率)之影響。因此,本研究所建構之分析流程與結果,對於未來進行史特林引擎幾何結構最佳化,具參考價值與實用性。
In this study, CFD simulations were used to identify the optimal geometric and operating parameters of a Gamma-type Stirling engine. The L9(3⁴) orthogonal array from the Taguchi method was utilized for optimization analysis, with two geometric factors (area ratio of the moving regenerator and number of holes) and two operating factors (temperature difference and engine rotational speed), each set at three levels: area ratios of 14%, 17%, and 20%; hole numbers of 75, 105, and 140; temperature differences of 200 K, 300 K, and 400 K; and rotational speeds of 60, 180, and 300 rpm. Results from CFD and signal-to-noise ratio analysis showed that the optimal configuration for maximum net power was: 14% area ratio, 75 holes, 400 K temperature difference, and 300 rpm. For thermal efficiency, the best setup was: 20% area ratio, 140 holes, 400 K, and 60 rpm. For regeneration efficiency, the optimal configuration was: 14% area ratio, 75 holes, 400 K, and 60 rpm.
[1] W.-L. Chen, C.-K. Chen, M.-J. Fang, and Y.-C. Yang, "A numerical study on applying slot-grooved displacer cylinder to a γ-type medium-temperature-differential stirling engine," Energy, vol. 144, pp. 679-693, 2018.
[2] G. Xiao, C. Chen, B. Shi, K. Cen, and M. Ni, "Experimental study on heat transfer of oscillating flow of a tubular Stirling engine heater," International Journal of Heat and Mass Transfer, vol. 71, pp. 1-7, 2014.
[3] E. Podesser, "Electricity production in rural villages with a biomass Stirling engine," Renewable Energy, vol. 16, no. 1-4, pp. 1049-1052, 1999.
[4] C. Çınar, F. Aksoy, H. Solmaz, E. Yılmaz, and A. Uyumaz, "Manufacturing and testing of an α-type Stirling engine," Applied Thermal Engineering, vol. 130, pp. 1373-1379, 2018.
[5] F. Aksoy, H. Solmaz, C. Çinar, and H. Karabulut, "1.2 kW beta type Stirling engine with rhombic drive mechanism," International Journal of Energy Research, vol. 41, no. 9, pp. 1310-1321, 2017.
[6] M. Güven, H. Bedir, and G. Anlaş, "Optimization and application of Stirling engine for waste heat recovery from a heavy-duty truck engine," Energy conversion and management, vol. 180, pp. 411-424, 2019.
[7] A. Sripakagorn and C. Srikam, "Design and performance of a moderate temperature difference Stirling engine," Renewable Energy, vol. 36, no. 6, pp. 1728-1733, 2011/06/01/ 2011, doi: https://doi.org/10.1016/j.renene.2010.12.010.
[8] M. H. Khanjanpour, M. Rahnama, A. A. Javadi, M. Akrami, A. R. Tavakolpour-Saleh, and M. Iranmanesh, "An experimental study of a gamma-type MTD Stirling engine," Case Studies in Thermal Engineering, vol. 24, p. 100871, 2021.
[9] B. Kongtragool and S. Wongwises, "Performance of low-temperature differential Stirling engines," Renewable Energy, vol. 32, no. 4, pp. 547-566, 2007.
[10] W.-L. Chen, G. M. Currao, C.-Y. Wu, B.-Y. Tsai, S.-C. Lin, and C.-J. Li, "An experimental analysis on a Stirling-engine-driven micro power-generation system integrated with a flat-flame burner powered by dimethyl ether fuel mixed with ammonia," Energy, vol. 314, p. 134224, 2025.
[11] A. R. Tavakolpour, A. Zomorodian, and A. A. Golneshan, "Simulation, construction and testing of a two-cylinder solar Stirling engine powered by a flat-plate solar collector without regenerator," Renewable Energy, vol. 33, no. 1, pp. 77-87, 2008.
[12] R. Gheith, F. Aloui, and S. B. Nasrallah, "Determination of adequate regenerator for a Gamma-type Stirling engine," Applied energy, vol. 139, pp. 272-280, 2015.
[13] W.-L. Chen, K.-L. Wong, and H.-E. Chen, "An experimental study on the performance of the moving regenerator for a γ-type twin power piston Stirling engine," Energy conversion and management, vol. 77, pp. 118-128, 2014.
[14] I. Tlili, Y. Timoumi, and S. B. Nasrallah, "Analysis and design consideration of mean temperature differential Stirling engine for solar application," Renewable energy, vol. 33, no. 8, pp. 1911-1921, 2008.
[15] A. Abuelyamen and R. Ben-Mansour, "Energy efficiency comparison of Stirling engine types (α, β, and γ) using detailed CFD modeling," International journal of thermal sciences, vol. 132, pp. 411-423, 2018.
[16] A. K. Almajri, S. Mahmoud, and R. Al-Dadah, "Modelling and parametric study of an efficient Alpha type Stirling engine performance based on 3D CFD analysis," Energy conversion and management, vol. 145, pp. 93-106, 2017.
[17] J. L. Salazar and W.-L. Chen, "A computational fluid dynamics study on the heat transfer characteristics of the working cycle of a β-type Stirling engine," Energy conversion and management, vol. 88, pp. 177-188, 2014.
[18] W.-L. Chen, Y.-C. Yang, and J. L. Salazar, "A CFD parametric study on the performance of a low-temperature-differential γ-type Stirling engine," Energy Conversion and Management, vol. 106, pp. 635-643, 2015.
[19] K. Bataineh, "Hybrid fuel-assisted solar-powered Stirling engine for combined cooling, heating, and power systems: a review," Energy, p. 131506, 2024.
[20] I. Arashnia, G. Najafi, B. Ghobadian, T. Yusaf, R. Mamat, and M. Kettner, "Development of micro-scale biomass-fuelled CHP system using Stirling Engine," Energy Procedia, vol. 75, pp. 1108-1113, 2015.
[21] E. Cardozo, C. Erlich, A. Malmquist, and L. Alejo, "Integration of a wood pellet burner and a Stirling engine to produce residential heat and power," Applied Thermal Engineering, vol. 73, no. 1, pp. 671-680, 2014.
[22] F. Catapano, C. Perozziello, and B. M. Vaglieco, "Heat transfer of a Stirling engine for waste heat recovery application from internal combustion engines," Applied Thermal Engineering, vol. 198, p. 117492, 2021.
[23] A. S. Nielsen, B. T. York, and B. D. MacDonald, "Stirling engine regenerators: How to attain over 95% regenerator effectiveness with sub-regenerators and thermal mass ratios," Applied Energy, vol. 253, p. 113557, 2019.