簡易檢索 / 詳目顯示

研究生: 林子堯
Lin, Tzu-Yao
論文名稱: 減震技術於離岸風力發電支承結構之應用研究
Seismic vibration control of offshore wind turbines
指導教授: 胡宣德
Hu, Hsuan-Teh
共同指導教授: 盧煉元
Lu, Lyan-Ywan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 134
中文關鍵詞: 風力發電離岸風機減震技術質量阻尼器消能元件
外文關鍵詞: wind energy, off-shore wind turbines, seismic mitigation, mass damper
相關次數: 點閱:100下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 再生能源的運用為全球發展趨勢,而就台灣的地理條件而言,海上風力發電為再生能源發展中最具潛力的項目之一。目前在歐美地區的風力發電技術雖已十分成熟,但因台灣地震發生頻繁,故位於外海之離岸風機耐震問題變成重要的課題。為強化風機支承結構的耐震能力,吾人或可考慮採用結構控制技術。由於風機支承結構為高達百餘公尺屬細長型結構,原應適合採用調諧質量阻尼器 (tune mass damper,TMD),但若採用傳統外加式TMD阻尼器作為制震系統,需佔用額外之空間,且會增加機艙之重量,造成海上運輸的不便,因此TMD在離岸風機的應用有其先天上之限制。為改善此問題,本文乃改以風機機艙本身之質量作為反力質塊,形成所謂的質量阻尼器(mass damper,MD)。MD系統與TMD不同處在於,前者質塊之自振頻率並不一定與下部結構之振頻調諧,而是於機艙及下部支承結構間安置具高度消能能力之減震元件,如此可藉由機艙及支承結構間之互制相對運動以提高整體系統之阻尼效應。由於一般機艙之重量約佔風機總重(含支承構造)40%左右,故可有效降低機艙及支承結構之地震反應。本文研究結果顯示,經由適當的選取MD的參數(如:阻尼比及頻率比),可同時大幅降低風機支承結構在地震力作用下之基底總剪力及機艙之最大加速度反應。相比TMD僅在外力靠近自振頻率時有效,MD在各震波作用下其減震效能皆相當優秀,亦即使用MD系統可同時提升風機支承結構及機艙內發電設備之耐震性能,為十分有效之風機抗震方法。

    Taiwan has one of the best wind-farms in the world; therefore, it is beneficial for Taiwan to develop renewable energy by using off-shore wind turbines. Nevertheless, since Taiwan is also prone to earthquakes, the problem of seismic protection for the offshore wind turbines becomes an important issue. To this end, a mass damper (MD) system is developed to mitigate the seismic response of offshore wind turbines in this study. Different from a traditional TMD, which usually needs an added reactive mass with an oscillating frequency tuned to that of the primary structure, the MD uses the mass of the nacelle of the wind turbine itself as the reactive mass and its frequency does not have to be tuned to the frequency of the supporting structure. Moreover, since the nacelle mass of a wind turbine can reach 40% of the total weight, it is expected that the seismic responses of the wind turbine can be effectively reduced by the MD. The simulation result of the study demonstrates that by properly selecting the MD parameters, i.e., the frequency and damping ratios, the absolute acceleration of the nacelle and the base shear of the supporting structure can be greatly reduced. Compared with an optimally designed TMD, the MD system is effective over a wider range of ground motions, while TMD is only effective when the excitation frequency is close to that of the TMD.

    摘要 I 英文延伸摘要 II 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 符號說明 XV 第一章 前言 1 1.1研究動機 1 1.2文獻回顧 2 1.3研究目的與內容 5 第二章 含質量阻尼器之風機結構簡化模型分析-集中質量模型 7 2.1集中質量模型及其運動方程式推導 7 2.2頻率響應函數推導 8 2.3風機頻率響應函數之比較 12 第三章 含質量阻尼器之風機結構精確模型分析 - 連續質量模型 14 3.1連續質量數學模型 14 3.2運動方程式之推導 14 3.3支承條件之考量 25 3.4結構阻尼之考量 27 3.5頻率響應函數之推導 28 第四章 數值分析方法及分析案例說明 33 4.1連續質量模型運動方程式之離散時間解 33 4.2數值模擬用風機結構參數之決定 35 4.3歷時分析用之震波說明 35 4.4歷時分析與頻率響應函數之比較驗證 36 4.5歷時分析與反應譜分析之比較驗證 36 4.6連續質量與集中質量模型之比較 38 第五章 含質量阻尼器之離岸風機減震評估 40 5.1質量阻尼器之主要設計參數 40 5.2集中質量模型之較佳MD參數研究 41 5.3連續質量模型之較佳MD參數研究 45 5.4與無減震風機地震歷時反應之比較 48 5.5質量阻尼器與傳統TMD之減震效能比較 49 第六章 結論與建議 53 6.1結論 53 6.2建議 55 參考文獻 56 附錄A 風機結構振形數值解與解析解支驗證 125 附錄B 歷時隔點分析 127 附錄C 非線性動力方程式 128

    參考文獻
    Adhikaria S. and S. Bhattacharyab (2012) “Dynamic analysis of wind turbine towers on flexible foundations.” Shock and Vibration 19, 37–56
    Bhattacharya, S., D. Lombardi, J. A. Cox and D. M. Wood (2013). "Dynamics of offshore wind turbines supported on two foundations." Proceedings of the ICE - Geotechnical Engineering 166(2): 159-169.
    Chang, T. J. (2002) “Assessment of wind characteristics and wind turbine characteristics in Taiwan.” Renewable Energy 28 , 851–871.
    Colwell, S. and B. Basu (2009). "Tuned liquid column dampers in offshore wind turbines for structural control." Engineering Structures 31(2): 358-368.
    Dueñas-Osorio, L. and B. Basu (2008). "Unavailability of wind turbines due to wind-induced accelerations." Engineering Structures 30(4): 885-893.
    Garelli, F., P. Camocardi and R. J. Mantz (2010). "Variable structure strategy to avoid amplitude and rate saturation in pitch control of a wind turbine." International Journal of Hydrogen Energy 35(11): 5869-5875.
    Houtzager, I., J. W. van Wingerden and M. Verhaegen (2013). "Wind turbine load reduction by rejecting the periodic load disturbances." Wind Energy 16(2): 235-256.
    Jonkman, J. S. Butterfield, W. Musial, and G. Scott (2009) “ Definition of a 5-MW reference wind turbine for offshore system development”, NREL/TP-500-38060 February
    Krenk, S., M. N. Svendesen, and J. Høgsberg (2012). "Resonant vibration control of three-bladed wind turbine rotors." AIAA Journal 50(1): 148-161.
    Kwon, D. K., A. Kareem and K. Butler (2012). "Gust-front loading effects on wind turbine tower systems." Journal of Wind Engineering and Industrial Aerodynamics 104-106: 109-115.
    Lackner, M. A. and M. A. Rotea (2011). "Passive structural control of offshore wind turbines." Wind Energy 14(3): 373-388.
    Li, J. (2012). "Experimental study on vibration control of offshore wind turbines using a ball vibration absorber." Energy and Power Engineering 04(03): 153-157.
    Lu, L. Y., J. J. Bain and L. L. Chung (1999) “Use of the active member concept in vibration mitigation of seismic structures.” Engineering Structures, Vol. 21, No. 4, 341- 351.
    Lu, L. Y. (2001) “Discrete-time modal control for seismic structures with active bracing system.” Journal of Intelligent Material System And Structures, Vol. 12.
    Lu, L. Y. (2004a) “Semi-active modal control for seismic structures with variable friction dampers.” Engineering Structures, 26,437-454.
    Lu, L. Y., L. L. Chung and G. L. Lin, (2004b) “A general method for semi-active feedback control of variable friction dampers.” Journal of Intelligent Material Systems and Structures, Vol. 15.
    Lu, L. Y., L. L. Chung, L. Y. Wu, G. L. Lin (2006) “Dynamic analysis of structures with friction devices using discrete-time state-space formulation.” Computers and Structures 84,1049–1071.
    Lu, L. Y. G. L. Lin and T. C. Kuo (2008) “Stiffness controllable isolation system for near-fault seismic isolation.” Engineering Structures, 30, 747–765.
    Lu, L. Y., G. L. Lin (2009) “Fuzzy friction controllers for semi-active seismic isolation systems.” Journal of Intelligent Material Systems And Structures, Vol. 20.
    Lu, L. Y., T.K. Lin and S. W. Yeh, (2010) “Experiment and analysis of a leverage-type stiffness-controllable isolation system for seismic engineering.” Earthquake Engng Struct. Dyn.; 39:1711–1736
    Lu, L. Y., T. Y. Lee and S. W. Yeh (2011a) “Theory and experimental study for sliding isolators with variable curvature.” Earthquake Engng Struct. Dyn, 40:1609–1627.
    Lu, L. Y., S. Y. Chu, S. W. Yeh, and C. H. Peng (2011b) “Modeling and experimental verification of a variable-stiffness isolation system using leverage mechanism.” Journal of Vibration and Control, 17: 1869 originally published online.
    Lu, L. Y., S. Y. Chu, S. W. Yeh, L. L. Chung (2012) “Seismic test of least-input-energy control with ground velocity feedback for variable-stiffness isolation systems.” Journal of Sound and Vibration 331,767–784.
    Lu, L. Y., L. L. Chung, L. Y. Wu, G. L. Lin (2006) “Dynamic analysis of structures with friction devices using discrete-time state-space formulation” Computers and Structures, Vol. 84, No.15-16, 1049-1071.
    Murtagh, P. J., A. Ghosh B. Basu and B. M. Broderick (2008). "Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence." Wind Energy 11(4): 305-317.
    Mcguire, W., R. H. Gallagher, R. D. Ziemian, Matrix Structural Analysis, 2nd Edition, 1999, John Wiley & Sons, Inc., New York.
    Meirovitch, L. Dynamics and Control of Structures, 1990, John Wiley & Sons, Inc.
    Saranyasoontorn, K. and Manuel L. (2006) ”Design loads for wind turbines using the environmental contour method.” 44th AIAA.
    Stewart, G. M. and M. A. Lackner (2011). "The effect of actuator dynamics on active structural control of offshore wind turbines." Engineering Structures 33(5): 1807-1816.
    Staino, A. and B. Basu (2013). "Dynamics and control of vibrations in wind turbines with variable rotor speed." Engineering Structures 56: 58-67.
    Tubaldi, E., L. Tassotti1, A. Dall’ Asta, and L. Dezi (2014). “Seismic response analysis of slender bridge piers.” Earthquake Engng Struct. Dyn. 43:1503–1519
    Wang Y., Y. Xia and X. Liu (2013) “Establishing robust short-term distributions of load extremes of offshore wind turbines.” Renewable Energy 57, 606-619.
    盧煉元、鍾立來 (1999) “國內外結構控制技術之進展”,土木技術 (防災科技專題),四月號,第14期,81-95頁。
    劉彥緯(2004) “壓電式半主動摩擦阻尼器之研發”,高雄第一科技大學營建工程系碩士論文,7月。指導教授:盧煉元。
    盧煉元、郭子敬、林錦隆 (2006) ”勁度可控式半主動滑動隔震系統”,中國土木水利工程學刊,第十八卷,第二期。
    楊庭維(2009) “半主動摩擦多元調諧質量阻尼器於結構減振之應用”,國立中興大學土木工程學系碩士論文,6月。指導教授:林其璋。
    洪俊宏(2011) “設備於建物中之耐震策略分析與實驗” 高雄第一科技大學營建工程系碩士論文,7月。指導教授:盧煉元。
    鍾立來、顧丁與、賴勇安、吳賴雲 (2012) “調諧質塊阻尼器於基底振動之最佳減振設計參數” 結構工程,第二十七卷第四期。
    黃心豪 (2013) “離岸風力發電在台灣”,杜風66期。
    薛嘉傑(2014) “垂直及水平地震力作用下框架式結構震動效應對設備反應之影響”,高雄第一科技大學營建工程系碩士論文,1月。指導教授:盧煉元。

    下載圖示 校內:2015-08-29公開
    校外:2019-08-29公開
    QR CODE