| 研究生: |
盧濟濱 Lu, Chi-Pin |
|---|---|
| 論文名稱: |
低複雜度影像縮放演算法及其硬體實作 A Low-Complexity Scaling Algorithm and Its VLSI Implementation |
| 指導教授: |
陳培殷
Chen, Pei-yin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 影像縮放 、影像插補器 、硬體實作 |
| 外文關鍵詞: | image interpolator, hardware implementation, image scaling |
| 相關次數: | 點閱:84 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
放大縮小技術是影像處理中的重要話題。它已經廣泛的被使用於許多的應用,比如:高畫質數位電視,液晶電視,數位錄放影機,影印機,醫學影像等等。本篇論文提出一個針對數位影像的低複雜度影像縮放演算法,我們定義了一個改良的 area-pixel 模型,這個模型採用了整數的參數作為運算,並且,藉由來源影像具局部特徵的特性更精準的估算出目標像素值。實驗的結果也顯示,我們的方法可以有效的保留住影像的邊緣特徵,而且在影像品質及數據比較上都比先前的方法有更好的表現。因為我們的方法需要低複雜度的運算且運算極有規律,因此非常適合於VLSI硬體的實作。針對此,我們提出了一個高效能的九級管線化的硬體架構。這個硬體架構,在台灣積體電路公司的 0.18μm 製程下,可以到達 200 MHZ 的運作速度。
Scaling is a very important issue in image processing. It has been used in many applications such as HDTV, LCD-TVs, digital video camcorders, copy-print machines, medical imaging and so on. In this thesis, a low-complexity scaling algorithm for digital image is proposed. We define a derived adaptive area-pixel model with only fixed-point coefficients and use it with the local characteristics in the source image to estimate the luminosity of each target pixel. Experiment results show that our method can reserve edge characteristics efficiently, and performs better than other previous techniques in terms of both quantitative evaluation and visual quality.
Since our method is simple and regular, it is very suitable for hardware implementation. A high performance nine-stage pipelined architecture for the proposed method is also presented in this thesis. In the simulation, our design can operate at 200 MHz properly with the TSMC 0.18μm technology.
[1] W. K. Pratt, Digital Image Processing. New York:Wiley-Interscience, 1991.
[2] S. Fifman, “Digital rectification of ERTS multispectral imagery,” in Proc. Significant Results Obtained from Earth Resources Technology Satellite-1, vol. 1, 1973, pp. 1131-1142.
[3] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Reading, MA: Addison-Wesley, 1992.
[4] C. Kim, S.M. Seong, J.A. Lee and L.S. Kim, “Winscale: An image scaling algorithm using an area pixel model,” IEEE Trans. on Circuits & Systems for Video Technology, vol. 13, 2003, pp. 549-553.
[5] I. Andreadis and A. Amanatiadis, “Digital Image Scaling,” IEEE Instrumentation, Measurement and Technology Conference, vol. 3, pp. 2028-2032, May 2005.
[6] H. S. Hou and H. C. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-26, 1978, pp. 508-517.
[7] S. Andrews and F. Harris, “Polynomial approximations of interpolants,” in Conf. Record 33rd Asilomar Conf. Signals, Systems, and Computers, vol. 1, 1999, pp. 447–451.
[8] N. Shezaf, H. Abramov-Segal, I. Sutskover, and R. Bar-Sella, “Adaptive low complexity algorithm for image zooming at fractional scaling ratio,” in 21st IEEE Conv. Electrical and Electronic Engineers, Tel Aviv, Israel, 2000, pp. 253–256.
[9] L.J. Wang, W.S. Hsieh, and T.K. Truong, “A Fast Computation of 2-D Cubic-Spline Interpolation,” IEEE Signal Processing Letters, vol.11, no.9, pp.768 - 771, Sep. 2004.
[10] S. Carrato and L. Tenze, “A high quality 2× image interpolator,” IEEE Signal Processing Letters, vol. 7, pp. 132–134, June 2000.
[11] G. Ramponi, “Warped distance for space-variant linear image interpolation,” IEEE Trans. on Image Processing, vol. 8, no. 5, pp. 629-639, May 1999.
[12] Aho, E.; Vanne, J.; Kuusilinna, K.; Hamalainen, T.D., “Comments on “Winscale: an image-scaling algorithm using an area pixel Model”,” IEEE Trans. on Circuits & Systems for Video Technology, vol. 15, pp. 454-455, Mar. 2005.