| 研究生: |
許景程 Hsu, Ching-Cheng |
|---|---|
| 論文名稱: |
小GTP酶Rab37調控骨橋蛋白釋放導致增加胰臟癌幹細胞數量和轉移 The small GTPase Rab37 regulates osteopontin secretion to increase pancreatic cancer stem cells population and metastasis |
| 指導教授: |
沈延盛
Shan, Yan-Shen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 胰腺癌 、骨橋蛋白 、ERK 、上皮變間質型的轉換 、腫瘤幹細胞KRAS 、Rab37 |
| 外文關鍵詞: | pancreatic cancer, osteopontin, ERK, EMT, CSC, KRAS, Rab37 small GTPase |
| 相關次數: | 點閱:81 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胰腺癌是一種高侵略性的腫瘤,並且伴隨著不良的預後。目前胰腺癌可用的治療方法與療效仍然有限。因此了解胰臟癌發病分子機制,對於早期的診斷、預後的預測和治療方法的發展都是有用的。眾所周知,自體分泌的調控訊號可以維持癌細胞生長。調控胞外作用的小型GTPase Rab37其功能與腫瘤的生成相關,但是其角色在胰腺癌中的機制仍然不明確。骨橋蛋白(OPN)是細胞分泌的細胞激素蛋白,能促進癌化的過程,也是胰腺癌的血清標誌物。此細胞激素誘導腫瘤具有幹細胞(CSC)的特性及轉移的能力可能是透過活化ERK1/2。我們利用組織微陣列的方法發現Rab37的表現量與胰腺癌的生成呈正相關。在體外實驗中,相對於對照組,過度表現Rab37的PANC-1細胞株具有較高轉移的能力和腫瘤幹細胞的特性,並且分泌較多的骨橋蛋白。相反的,降低MIA PaCa-2的Rab37表現會減少癌細胞轉移的能力和腫瘤幹細胞的特性,並且減少骨橋蛋白的分泌。原位注射癌細胞的老鼠實驗與體外實驗結果一致,發現Rab37高表現可以增強腫瘤的增生和轉移,相反地,降低癌細胞Rab37的表現反而能抑制腫瘤的生成和轉移。在機制上,我們也發現骨橋蛋白的分泌可以透過Rab37所調控,並且活化ERK路徑導致上皮變間質型的轉換(EMT)和增加腫瘤幹細胞的特性。除此之外,我們還證實KRAS的突變會促進Rab37的表現,進一步增加骨橋蛋白的分泌。相反的,降低KRAS突變的表現會造成胰腺癌細胞的Rab37表現量降低和骨橋蛋白的分泌減少。臨床資料也顯示胰腺癌中Rab37的表現量、骨橋蛋白的分泌和KRAS的突變,三者之間具有相關性;KRAS/Rab37/OPN的高表現與胰腺癌的低生存率也具有相關性。綜合以上,我們證實KRAS突變所誘導的Rab37可以調控骨橋蛋白的分泌,進而使ERK的活性增加,導致胰腺癌的癌化。因此,Rab37 在胰腺癌中可能扮演一個致癌因子,並且是具有潛力的胰腺癌治療標靶。
Pancreatic cancer is a highly aggressive tumor with dismal outcomes. The efficacy of current available treatments for pancreatic cancer remain limited. For this reason, a better understanding of the fundamental molecular mechanism underlying pancreatic cancer pathogenesis would be useful for early diagnosis, prediction of prognosis, and development of effective therapies. It is well known that autocrine signaling can provide self-sustaining growth signals to cancer cells. The small GTPase Rab37 that regulates exocytosis has been involved in tumorigenesis; however, its role in pancreatic cancer remains unclear. Osteopontin, a secreted protein involving in cancer progression, serves as a serum marker for pancreatic cancer. This cytokine has been reported to induce cancer stem cell (CSC) ability and metastasis through activation of ERK1/2. Previously, we have found that Rab37 expression is positively associated with pancreatic cancer progression using tissue microarrays. In vitro results showed that, as compared with control cells, Rab37-overexpressing PANC-1 stable cells displayed high metastatic ability, high CSC activity, and increased osteopontin secretion, but Rab37-knockdown MiaPaCa-2 cells did not. Consistent with the in vitro results, high expression of Rab37 enhanced tumor proliferation and metastasis, while knockdown of Rab37 suppressed these effects in an orthotopic mouse model. Mechanistically, Rab37-induced osteopontin can promote EMT and CSC activity through ERK. Furthermore, we demonstrated that overexpression of mutant KRAS up-regulated Rab37 and increased osteopontin secretion, whereas knockdown of mutant KRAS counteracted the effects in pancreatic cancer cells. Clinical data also showed a positive correlation among Rab37 expression, osteopontin secretion, and KRAS mutation, and that high KRAS/Rab37/OPN expression was associated with poor survival. Taken together, we here identify that KRAS mutation-induced upregulation of Rab37 mediates osteopontin secretion and thus ERK activation, driving the progression of pancreatic cancer. Rab37 may therefore acts as an oncogenic factor in pancreatic cancer and represent a potential therapeutic target.
Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 100(7), 3983-3988. doi:10.1073/pnas.0530291100
Barbarin, A., & Frade, R. (2011). Procathepsin L secretion, which triggers tumour progression, is regulated by Rab4a in human melanoma cells. Biochem J, 437(1), 97-107. doi:10.1042/BJ20110361
Barr, F., & Lambright, D. G. (2010). Rab GEFs and GAPs. Curr Opin Cell Biol, 22(4), 461-470. doi:10.1016/j.ceb.2010.04.007
Behera, R., Kumar, V., Lohite, K., Karnik, S., & Kundu, G. C. (2010). Activation of JAK2/STAT3 signaling by osteopontin promotes tumor growth in human breast cancer cells. Carcinogenesis, 31(2), 192-200. doi:10.1093/carcin/bgp289
Bellahcene, A., Castronovo, V., Ogbureke, K. U., Fisher, L. W., & Fedarko, N. S. (2008). Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer, 8(3), 212-226. doi:10.1038/nrc2345
Bellahcene, A., Castronovo, V., Ogbureke, K. U. E., Fisher, L. W., & Fedarko, N. S. (2008). Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer, 8(3), 212-226.
Blanc, L., & Vidal, M. (2018). New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases, 9(1-2), 95-106. doi:10.1080/21541248.2016.1264352
Boelens, M. C., Wu, T. J., Nabet, B. Y., Xu, B., Qiu, Y., Yoon, T., Minn, A. J. (2014). Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell, 159(3), 499-513. doi:10.1016/j.cell.2014.09.051
Boman, B. M., & Wicha, M. S. (2008). Cancer stem cells: a step toward the cure. J Clin Oncol, 26(17), 2795-2799. doi:10.1200/JCO.2008.17.7436
Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 3(7), 730-737.
Bravo-Cordero, J. J., Marrero-Diaz, R., Megias, D., Genis, L., Garcia-Grande, A., Garcia, M. A., Montoya, M. C. (2007). MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway. EMBO J, 26(6), 1499-1510. doi:10.1038/sj.emboj.7601606
Caswell, P. T., Spence, H. J., Parsons, M., White, D. P., Clark, K., Cheng, K. W., Norman, J. C. (2007). Rab25 associates with alpha5beta1 integrin to promote invasive migration in 3D microenvironments. Dev Cell, 13(4), 496-510. doi:10.1016/j.devcel.2007.08.012
Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., Schultz, N. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov, 2(5), 401-404. doi:10.1158/2159-8290.CD-12-00952/5/401 [pii]
Chari, S. T., Leibson, C. L., Rabe, K. G., Ransom, J., De Andrade, M., & Petersen, G. M. (2005). Probability of pancreatic cancer following diabetes: a population-based study. Gastroenterology, 129(2), 504-511.
Chen, Y. W., Liu, J. Y., Lin, S. T., Li, J. M., Huang, S. H., Chen, J. Y., Chan, H. L. (2011). Proteomic analysis of gemcitabine-induced drug resistance in pancreatic cancer cells. Mol Biosyst, 7(11), 3065-3074. doi:10.1039/c1mb05125c
Cheng, K. W., Lahad, J. P., Kuo, W. L., Lapuk, A., Yamada, K., Auersperg, N., Mills, G. B. (2004). The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med, 10(11), 1251-1256. doi:10.1038/nm1125
Cherfils, J., & Zeghouf, M. (2013). Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev, 93(1), 269-309. doi:10.1152/physrev.00003.2012
Chiba, T., Kita, K., Zheng, Y. W., Yokosuka, O., Saisho, H., Iwama, A., Taniguchi, H. (2006). Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology, 44(1), 240-251. doi:10.1002/hep.21227
Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J., & Maitland, N. J. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res, 65(23), 10946-10951. doi:10.1158/0008-5472.CAN-05-2018
Denhardt, D. T., & Guo, X. (1993). Osteopontin: a protein with diverse functions. FASEB J, 7(15), 1475-1482.
Ding, K., Fan, L., Chen, S., Wang, Y., Yu, H., Sun, Y., Liu, Y. (2015). Overexpression of osteopontin promotes resistance to cisplatin treatment in HCC. Oncol Rep, 34(6), 3297-3303. doi:10.3892/or.2015.4306
Dobashi, S., Katagiri, T., Hirota, E., Ashida, S., Daigo, Y., Shuin, T., Nakamura, Y. (2009a). Involvement of TMEM22 overexpression in the growth of renal cell carcinoma cells. Oncol Rep, 21(2), 305-312.
Dobashi, S., Katagiri, T., Hirota, E., Ashida, S., Daigo, Y., Shuin, T., Nakamura, Y. (2009b). Involvement of TMEM22 overexpression in the growth of renal cell carcinoma cells. Oncology Reports, 21(2), 305-312. doi:10.3892/or_00000222
Dome, B., Timar, J., Dobos, J., Meszaros, L., Raso, E., Paku, S., Tovari, J. (2006). Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res, 66(14), 7341-7347. doi:10.1158/0008-5472.CAN-05-4654
El-Kenawi, A. E., & El-Remessy, A. B. (2013). Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales. Br J Pharmacol, 170(4), 712-729. doi:10.1111/bph.12344
Eser, S., Schnieke, A., Schneider, G., & Saur, D. (2014). Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer, 111(5), 817-822. doi:10.1038/bjc.2014.215
Eyol, E., Murtaga, A., Zhivkova-Galunska, M., Georges, R., Zepp, M., Djandji, D., Adwan, H. (2012). Few genes are associated with the capability of pancreatic ductal adenocarcinoma cells to grow in the liver of nude rats. Oncol Rep, 28(6), 2177-2187. doi:10.3892/or.2012.2049
Feng, Y., Press, B., & Wandinger-Ness, A. (1995). Rab 7: an important regulator of late endocytic membrane traffic. J Cell Biol, 131(6 Pt 1), 1435-1452.
Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 127(12), 2893-2917. doi:10.1002/ijc.25516
Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Bray, F. (2014). Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. doi:10.1002/ijc.29210
Fernando, R. I., Castillo, M. D., Litzinger, M., Hamilton, D. H., & Palena, C. (2011). IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells. Cancer Res, 71(15), 5296-5306. doi:10.1158/0008-5472.CAN-11-0156
Frittoli, E., Palamidessi, A., Marighetti, P., Confalonieri, S., Bianchi, F., Malinverno, C., Scita, G. (2014). A RAB5/RAB4 recycling circuitry induces a proteolytic invasive program and promotes tumor dissemination. J Cell Biol, 206(2), 307-328. doi:10.1083/jcb.201403127
Gimba, E. R., & Tilli, T. M. (2013). Human osteopontin splicing isoforms: Known roles, potential clinical applications and activated signaling pathways. Cancer Lett, 331(1), 11-17. doi:10.1016/j.canlet.2012.12.003
Goonetilleke, K. S., & Siriwardena, A. K. (2007). Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur J Surg Oncol, 33(3), 266-270. doi:10.1016/j.ejso.2006.10.004
Grosshans, B. L., Ortiz, D., & Novick, P. (2006). Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A, 103(32), 11821-11827. doi:10.1073/pnas.0601617103
Gutkowska, M., & Swiezewska, E. (2012). Structure, regulation and cellular functions of Rab geranylgeranyl transferase and its cellular partner Rab Escort Protein. Mol Membr Biol, 29(7), 243-256. doi:10.3109/09687688.2012.693211
Halberg, N., Sengelaub, C. A., Navrazhina, K., Molina, H., Uryu, K., & Tavazoie, S. F. (2016). PITPNC1 Recruits RAB1B to the Golgi Network to Drive Malignant Secretion. Cancer Cell, 29(3), 339-353. doi:10.1016/j.ccell.2016.02.013
Hendrix, A., Maynard, D., Pauwels, P., Braems, G., Denys, H., Van den Broecke, R., Westbroek, W. (2010). Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis. J Natl Cancer Inst, 102(12), 866-880. doi:10.1093/jnci/djq153
Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., Heeschen, C. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3), 313-323. doi:10.1016/j.stem.2007.06.002
Hertel, L. W., Kroin, J. S., Misner, J. W., & Tustin, J. M. (1988). Synthesis of 2-Deoxy-2,2-Difluoro-D-Ribose and 2-Deoxy-2,2-Difluoro-D-Ribofuranosyl Nucleosides. J Org Chem, 53(11), 2406-2409. doi:Doi 10.1021/Jo00246a002
Hong, S. P., Wen, J., Bang, S., Park, S., & Song, S. Y. (2009). CD44-positive cells are responsible for gemcitabine resistance in pancreatic cancer cells. Int J Cancer, 125(10), 2323-2331. doi:10.1002/ijc.24573
Hou, Q., Wu, Y. H., Grabsch, H., Zhu, Y., Leong, S. H., Ganesan, K., Tan, P. (2008). Integrative genomics identifies RAB23 as an invasion mediator gene in diffuse-type gastric cancer. Cancer Res, 68(12), 4623-4630. doi:10.1158/0008-5472.CAN-07-5870
Hou, Y. C., Chao, Y. J., Tung, H. L., Wang, H. C., & Shan, Y. S. (2014). Coexpression of CD44-positive/CD133-positive cancer stem cells and CD204-positive tumor-associated macrophages is a predictor of survival in pancreatic ductal adenocarcinoma. Cancer, 120(17), 2766-2777. doi:10.1002/cncr.28774
Hruban, R. H., Goggins, M., Parsons, J., & Kern, S. E. (2000). Progression model for pancreatic cancer. Clin Cancer Res, 6(8), 2969-2972.
Hsu, C., Morohashi, Y., Yoshimura, S., Manrique-Hoyos, N., Jung, S., Lauterbach, M. A., Simons, M. (2010). Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol, 189(2), 223-232. doi:10.1083/jcb.200911018
Huang, P., Wang, C. Y., Gou, S. M., Wu, H. S., Liu, T., & Xiong, J. X. (2008). Isolation and biological analysis of tumor stem cells from pancreatic adenocarcinoma. World J Gastroenterol, 14(24), 3903-3907.
Jain, R., Fischer, S., Serra, S., & Chetty, R. (2010). The Use of Cytokeratin 19 (CK19) Immunohistochemistry in Lesions of the Pancreas, Gastrointestinal Tract, and Liver. Appl Immunohistochem Mol Morphol, 18(1), 9-15.
Jemal, A., Siegel, R., Xu, J., & Ward, E. (2010). Cancer statistics, 2010. CA Cancer J Clin, 60(5), 277-300. doi:10.3322/caac.20073
Jia, D., Yang, W., Li, L., Liu, H., Tan, Y., Ooi, S., Wang, L. (2014). beta-Catenin and NF-kappaB co-activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast cancer. Cell Death Differ. doi:10.1038/cdd.2014.145
Johnstone, R. M. (1992). The Jeanne Manery-Fisher Memorial Lecture 1991. Maturation of reticulocytes: formation of exosomes as a mechanism for shedding membrane proteins. Biochem Cell Biol, 70(3-4), 179-190.
Kale, S., Raja, R., Thorat, D., Soundararajan, G., Patil, T. V., & Kundu, G. C. (2014). Osteopontin signaling upregulates cyclooxygenase-2 expression in tumor-associated macrophages leading to enhanced angiogenesis and melanoma growth via alpha9beta1 integrin. Oncogene, 33(18), 2295-2306. doi:10.1038/onc.2013.184
Kauppi, M., Simonsen, A., Bremnes, B., Vieira, A., Callaghan, J., Stenmark, H., & Olkkonen, V. M. (2002). The small GTPase Rab22 interacts with EEA1 and controls endosomal membrane trafficking. J Cell Sci, 115(Pt 5), 899-911.
Kim, M. P., Fleming, J. B., Wang, H., Abbruzzese, J. L., Choi, W., Kopetz, S., Gallick, G. E. (2011). ALDH activity selectively defines an enhanced tumor-initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma. PLoS One, 6(6), e20636. doi:10.1371/journal.pone.0020636PONE-D-10-06361 [pii]
Kim, S. Y., Kang, J. W., Song, X., Kim, B. K., Yoo, Y. D., Kwon, Y. T., & Lee, Y. J. (2013). Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells. Cell Signal, 25(4), 961-969. doi:10.1016/j.cellsig.2013.01.007
Kolb, A., Kleeff, J., Guweidhi, A., Esposito, I., Giese, N. A., Adwan, H., Friess, H. (2005). Osteopontin influences the invasiveness of pancreatic cancer cells and is increased in neoplastic and inflammatory conditions. Cancer Biol Ther, 4(7), 740-746.
Konstantinidis, I. T., Warshaw, A. L., Allen, J. N., Blaszkowsky, L. S., Castillo, C. F., Deshpande, V., Ferrone, C. R. (2013). Pancreatic ductal adenocarcinoma: is there a survival difference for R1 resections versus locally advanced unresectable tumors? What is a "true" R0 resection? Ann Surg, 257(4), 731-736. doi:10.1097/SLA.0b013e318263da2f
Kotzsch, M., Dorn, J., Doetzer, K., Schmalfeldt, B., Krol, J., Baretton, G., Magdolen, V. (2011). mRNA expression levels of the biological factors uPAR, uPAR-del4/5, and rab31, displaying prognostic value in breast cancer, are not clinically relevant in advanced ovarian cancer. Biol Chem, 392(11), 1047-1051. doi:10.1515/BC.2011.166
Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Dick, J. E. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645-648. doi:10.1038/367645a0
Lee, H. J., You, D. D., Choi, D. W., Choi, Y. S., Kim, S. J., Won, Y. S., & Moon, H. J. (2011). Significance of CD133 as a cancer stem cell markers focusing on the tumorigenicity of pancreatic cancer cell lines. J Korean Surg Soc, 81(4), 263-270. doi:10.4174/jkss.2011.81.4.263
Li, C., Lee, C. J., & Simeone, D. M. (2009). Identification of human pancreatic cancer stem cells. Methods Mol Biol, 568, 161-173. doi:10.1007/978-1-59745-280-9_10
Li, C. W., Heidt, D. G., Dalerba, P., Burant, C. F., Zhang, L. J., Adsay, V., Simeone, D. M. (2007). Identification of pancreatic cancer stem cells. Cancer Res, 67(3), 1030-1037. doi:Doi 10.1158/0008-5472.Can-06-2030
Ljubicic, S., Bezzi, P., Brajkovic, S., Nesca, V., Guay, C., Ohbayashi, N., Regazzi, R. (2013). The GTPase Rab37 Participates in the Control of Insulin Exocytosis. PLoS One, 8(6), e68255. doi:10.1371/journal.pone.0068255
Luo, M. L., Gong, C., Chen, C. H., Hu, H., Huang, P., Zheng, M., Lu, K. P. (2015). The Rab2A GTPase promotes breast cancer stem cells and tumorigenesis via Erk signaling activation. Cell Rep, 11(1), 111-124. doi:10.1016/j.celrep.2015.03.002
Mönkemüller, K., Fry, L., & Malfertheiner, P. (2007). Pancreatic cancer is 'always non-resectable'. Dig dis, 25(3), 285-288.
Ma, I., & Allan, A. L. (2011). The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Rev, 7(2), 292-306. doi:10.1007/s12015-010-9208-4
Macara, I. G., Lounsbury, K. M., Richards, S. A., McKiernan, C., & Bar-Sagi, D. (1996). The Ras superfamily of GTPases. FASEB J, 10(5), 625-630.
Masuda, E. S., Luo, Y., Young, C., Shen, M., Rossi, A. B., Huang, B. C., Scheller, R. H. (2000). Rab37 is a novel mast cell specific GTPase localized to secretory granules. FEBS Lett, 470(1), 61-64.
Meng, F., Li, C., Li, W., Gao, Z., Guo, K., & Song, S. (2014). Interaction between pancreatic cancer cells and tumor-associated macrophages promotes the invasion of pancreatic cancer cells and the differentiation and migration of macrophages. IUBMB Life, 66(12), 835-846. doi:10.1002/iub.1336
Mizuno, K., Tolmachova, T., Ushakov, D. S., Romao, M., Abrink, M., Ferenczi, M. A., Seabra, M. C. (2007). Rab27b regulates mast cell granule dynamics and secretion. Traffic, 8(7), 883-892. doi:10.1111/j.1600-0854.2007.00571.x
Modolell, I., Guarner, L., & Malagelada, J. (1999). Vagaries of clinical presentation of pancreatic and biliary tract cancer. Ann oncol, 10(suppl_4), S82-S84.
Nam, K. T., Lee, H. J., Smith, J. J., Lapierre, L. A., Kamath, V. P., Chen, X., Goldenring, J. R. (2010). Loss of Rab25 promotes the development of intestinal neoplasia in mice and is associated with human colorectal adenocarcinomas. J Clin Invest, 120(3), 840-849. doi:10.1172/JCI40728
Nashida, T., Imai, A., & Shimomura, H. (2006). Relation of Rab26 to the amylase release from rat parotid acinar cells. Arch Oral Biol, 51(2), 89-95. doi:10.1016/j.archoralbio.2005.06.005
Nowell, P. C. (1976). The clonal evolution of tumor cell populations. Science, 194(4260), 23-28.
Ohno, K., Nishimori, H., Yasoshima, T., Kamiguchi, K., Hata, F., Fukui, R., Hirata, K. (2010). Inhibition of osteopontin reduces liver metastasis of human pancreatic cancer xenografts injected into the spleen in a mouse model. Surg Today, 40(4), 347-356. doi:10.1007/s00595-009-4082-x
Olempska, M., Eisenach, P. A., Ammerpohl, O., Ungefroren, H., Fandrich, F., & Kalthoff, H. (2007). Detection of tumor stem cell markers in pancreatic carcinoma cell lines. Hepatobiliary Pancreat Dis Int, 6(1), 92-97.
Ostenfeld, M. S., Jeppesen, D. K., Laurberg, J. R., Boysen, A. T., Bramsen, J. B., Primdal-Bengtson, B., Orntoft, T. F. (2014). Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res, 74(20), 5758-5771. doi:10.1158/0008-5472.CAN-13-3512
Pellinen, T., Arjonen, A., Vuoriluoto, K., Kallio, K., Fransen, J. A., & Ivaska, J. (2006). Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of beta1-integrins. J Cell Biol, 173(5), 767-780. doi:10.1083/jcb.200509019
Plaks, V., Kong, N. W., & Werb, Z. (2015). The Cancer Stem Cell Niche: How Essential Is the Niche in Regulating Stemness of Tumor Cells? Cell Stem Cell, 16(3), 225-238. doi:10.1016/j.stem.2015.02.015
Poruk, K. E., Firpo, M. A., Scaife, C. L., Adler, D. G., Emerson, L. L., Boucher, K. M., & Mulvihill, S. J. (2013). Serum osteopontin and tissue inhibitor of metalloproteinase 1 as diagnostic and prognostic biomarkers for pancreatic adenocarcinoma. Pancreas, 42(2), 193-197. doi:10.1097/MPA.0b013e31825e354d
Pour, P. M. (1991). The Silent Killer. Int J Pancreatol, 10(2), 103-104.
Prince, M. E., Sivanandan, R., Kaczorowski, A., Wolf, G. T., Kaplan, M. J., Dalerba, P., Ailles, L. E. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A, 104(3), 973-978. doi:10.1073/pnas.0610117104
Raja, R., Kale, S., Thorat, D., Soundararajan, G., Lohite, K., Mane, A., Kundu, G. C. (2014). Hypoxia-driven osteopontin contributes to breast tumor growth through modulation of HIF1alpha-mediated VEGF-dependent angiogenesis. Oncogene, 33(16), 2053-2064. doi:10.1038/onc.2013.171
Ran Wei, J. P. C. W., Hang Fai Kwok. (2017). Osteopontin -- a promising biomarker for cancer therapy. J Cancer, 8(12), 2173-2183. doi:10.7150/jca.20480
Rangaswami, H., Bulbule, A., & Kundu, G. C. (2006). Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol, 16(2), 79-87. doi:10.1016/j.tcb.2005.12.005
Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105-111. doi:10.1038/3510216735102167 [pii]
Rhim, A. D., Mirek, E. T., Aiello, N. M., Maitra, A., Bailey, J. M., McAllister, F., Stanger, B. Z. (2012). EMT and dissemination precede pancreatic tumor formation. Cell, 148(1-2), 349-361. doi:10.1016/j.cell.2011.11.025
Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., & De Maria, R. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111-115. doi:10.1038/nature05384
Robertson, B. W., & Chellaiah, M. A. (2010). Osteopontin induces beta-catenin signaling through activation of Akt in prostate cancer cells. Exp Cell Res, 316(1), 1-11. doi:10.1016/j.yexcr.2009.10.012
Rodriguez-Gabin, A. G., Ortiz, E., Demoliner, K., Si, Q., Almazan, G., & Larocca, J. N. (2010). Interaction of Rab31 and OCRL-1 in oligodendrocytes: its role in transport of mannose 6-phosphate receptors. J Neurosci Res, 88(3), 589-604. doi:10.1002/jnr.22236
Rupnik, M., Kreft, M., Nothias, F., Grilc, S., Bobanovic, L. K., Johannes, L., Zorec, R. (2007). Distinct role of Rab3A and Rab3B in secretory activity of rat melanotrophs. Am J Physiol Cell Physiol, 292(1), C98-105. doi:10.1152/ajpcell.00005.2006
Ryan, D. P., Hong, T. S., & Bardeesy, N. (2014a). Pancreatic Adenocarcinoma. New England Journal of Medicine, 371(11), 1039-1049. doi:Doi 10.1056/Nejmra1404198
Ryan, D. P., Hong, T. S., & Bardeesy, N. (2014b). Pancreatic adenocarcinoma. N Engl J Med, 371(22), 2140-2141. doi:10.1056/NEJMc1412266
Savina, A., Vidal, M., & Colombo, M. I. (2002). The exosome pathway in K562 cells is regulated by Rab11. J Cell Sci, 115(Pt 12), 2505-2515.
Shah, A. N., Summy, J. M., Zhang, J., Park, S. I., Parikh, N. U., & Gallick, G. E. (2007). Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol, 14(12), 3629-3637. doi:10.1245/s10434-007-9583-5
Sheng, Y., Song, Y., Li, Z., Wang, Y., Lin, H., Cheng, H., & Zhou, R. (2018). RAB37 interacts directly with ATG5 and promotes autophagosome formation via regulating ATG5-12-16 complex assembly. Cell Death Differ, 25(5), 918-934. doi:10.1038/s41418-017-0023-1
Siegel, R. L., Miller, K. D., & Jemal, A. (2017). Cancer Statistics, 2017. CA Cancer J Clin, 67(1), 7-30. doi:10.3322/caac.21387
Silva, A. M., Almeida, M. I., Teixeira, J. H., Maia, A. F., Calin, G. A., Barbosa, M. A., & Santos, S. G. (2017). Dendritic Cell-derived Extracellular Vesicles mediate Mesenchymal Stem/Stromal Cell recruitment. Sci Rep, 7(1), 1667. doi:10.1038/s41598-017-01809-x
Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J., & Dirks, P. B. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Res, 63(18), 5821-5828.
Song, G., Cai, Q. F., Mao, Y. B., Ming, Y. L., Bao, S. D., & Ouyang, G. L. (2008). Osteopontin promotes ovarian cancer progression and cell survival and increases HIF-1alpha expression through the PI3-K/Akt pathway. Cancer Sci, 99(10), 1901-1907. doi:10.1111/j.1349-7006.2008.00911.x
Song, Y., Baba, T., Li, Y. Y., Furukawa, K., Tanabe, Y., Matsugo, S., Mukaida, N. (2015). Gemcitabine-induced CXCL8 expression counteracts its actions by inducing tumor neovascularization. Biochem Biophys Res Commun. doi:S0006-291X(15)00159-X [pii]10.1016/j.bbrc.2015.01.112
Steffan, J. J., Dykes, S. S., Coleman, D. T., Adams, L. K., Rogers, D., Carroll, J. L., Cardelli, J. A. (2014). Supporting a role for the GTPase Rab7 in prostate cancer progression. PLoS One, 9(2), e87882. doi:10.1371/journal.pone.0087882
Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol, 10(8), 513-525. doi:10.1038/nrm2728
Stenmark, H., & Olkkonen, V. M. (2001). The Rab GTPase family. Genome Biol, 2(5), REVIEWS3007.
Takahashi, S., Kubo, K., Waguri, S., Yabashi, A., Shin, H. W., Katoh, Y., & Nakayama, K. (2012). Rab11 regulates exocytosis of recycling vesicles at the plasma membrane. J Cell Sci, 125(Pt 17), 4049-4057. doi:10.1242/jcs.102913
Tang, B. L., & Ng, E. L. (2009). Rabs and cancer cell motility. Cell Motil Cytoskeleton, 66(7), 365-370. doi:10.1002/cm.20376
Thomas, J. D., Zhang, Y. J., Wei, Y. H., Cho, J. H., Morris, L. E., Wang, H. Y., & Zheng, X. F. (2014). Rab1A is an mTORC1 activator and a colorectal oncogene. Cancer Cell, 26(5), 754-769. doi:10.1016/j.ccell.2014.09.008
Tsai, C. H., Cheng, H. C., Wang, Y. S., Lin, P., Jen, J., Kuo, I. Y., Wang, Y. C. (2014). Small GTPase Rab37 targets tissue inhibitor of metalloproteinase 1 for exocytosis and thus suppresses tumour metastasis. Nat Commun, 5, 4804. doi:10.1038/ncomms5804
Tsai, J. H., & Yang, J. (2013). Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev, 27(20), 2192-2206. doi:10.1101/gad.225334.113
Tzeng, H. T., Li, T. H., Tang, Y. A., Tsai, C. H., Frank Lu, P. J., Lai, W. W., Wang, Y. C. (2017). Phosphorylation of Rab37 by protein kinase C alpha inhibits the exocytosis function and metastasis suppression activity of Rab37. Oncotarget, 8(65), 108556-108570. doi:10.18632/oncotarget.20998
Tzeng, H. T., Su, C. C., Chang, C. P., Lai, W. W., Su, W. C., & Wang, Y. C. (2018). Rab37 in lung cancer mediates exocytosis of soluble ST2 and thus skews macrophages towards tumor-suppressing phenotype. Int J Cancer. doi:10.1002/ijc.31569
Tzeng, H. T., Tsai, C. H., Yen, Y. T., Cheng, H. C., Chen, Y. C., Pu, S. W., Wang, Y. C. (2016). Dysregulation of Rab37-Mediated Cross-talk between Cancer Cells and Endothelial Cells via Thrombospondin-1 Promotes Tumor Neovasculature and Metastasis. Clin Cancer Res. doi:10.1158/1078-0432.CCR-16-1520
Tzeng, H. T., Tsai, C. H., Yen, Y. T., Cheng, H. C., Chen, Y. C., Pu, S. W., Wang, Y. C. (2017). Dysregulation of Rab37-Mediated Cross-talk between Cancer Cells and Endothelial Cells via Thrombospondin-1 Promotes Tumor Neovasculature and Metastasis. Clin Cancer Res, 23(9), 2335-2345. doi:10.1158/1078-0432.CCR-16-1520
Vincent, A., Herman, J., Schulick, R., Hruban, R. H., & Goggins, M. (2011). Pancreatic cancer. Lancet, 378(9791), 607-620. doi:10.1016/S0140-6736(10)62307-0
Visvader, J. E. (2011). Cells of origin in cancer. Nature, 469(7330), 314-322. doi:10.1038/nature09781
Wang, K. X., & Denhardt, D. T. (2008). Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev, 19(5-6), 333-345. doi:10.1016/j.cytogfr.2008.08.001
Wang, M., Han, J., Marcar, L., Black, J., Liu, Q., Li, X., Willers, H. (2017). Radiation Resistance in KRAS-Mutated Lung Cancer Is Enabled by Stem-like Properties Mediated by an Osteopontin-EGFR Pathway. Cancer Res, 77(8), 2018-2028. doi:10.1158/0008-5472.CAN-16-0808
Wang, T., Gilkes, D. M., Takano, N., Xiang, L., Luo, W., Bishop, C. J., Semenza, G. L. (2014). Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci U S A, 111(31), E3234-3242. doi:10.1073/pnas.1410041111
Wang, W. Y., Hsu, C. C., Wang, T. Y., Li, C. R., Hou, Y. C., Chu, J. M., Tsai, K. K. (2013). A gene expression signature of epithelial tubulogenesis and a role for ASPM in pancreatic tumor progression. Gastroenterology, 145(5), 1110-1120. doi:10.1053/j.gastro.2013.07.040S0016-5085(13)01122-0 [pii]
Wasmeier, C., Romao, M., Plowright, L., Bennett, D. C., Raposo, G., & Seabra, M. C. (2006). Rab38 and Rab32 control post-Golgi trafficking of melanogenic enzymes. J Cell Biol, 175(2), 271-281. doi:10.1083/jcb.200606050
Webber, J. P., Spary, L. K., Sanders, A. J., Chowdhury, R., Jiang, W. G., Steadman, R., Clayton, A. (2015). Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene, 34(3), 290-302. doi:10.1038/onc.2013.560
Wei, R., Wong, J. P. C., & Kwok, H. F. (2017). Osteopontin -- a promising biomarker for cancer therapy. J Cancer, 8(12), 2173-2183. doi:10.7150/jca.20480
West, N. R., Murray, J. I., & Watson, P. H. (2014). Oncostatin-M promotes phenotypic changes associated with mesenchymal and stem cell-like differentiation in breast cancer. Oncogene, 33(12), 1485-1494. doi:10.1038/onc.2013.105
Wood, L. D. (2013). Pancreatic cancer genomes: toward molecular subtyping and novel approaches to diagnosis and therapy. Mol Diagn Ther, 17(5), 287-297. doi:10.1007/s40291-013-0043-6
Wu, C. Y., Tseng, R. C., Hsu, H. S., Wang, Y. C., & Hsu, M. T. (2009). Frequent down-regulation of hRAB37 in metastatic tumor by genetic and epigenetic mechanisms in lung cancer. Lung Cancer, 63(3), 360-367. doi:10.1016/j.lungcan.2008.06.014
Xu, X., Guan, X., Tao, H., Yang, K., & Bai, Y. (2013). An association study on genetic polymorphisms of Rab37 gene with the risk of esophageal squamous cell carcinoma in a Chinese Han population. Int J Med Sci, 10(3), 235-242. doi:10.7150/ijms.5524
Yang, J., Liu, W., Lu, X., Fu, Y., Li, L., & Luo, Y. (2015). High expression of small GTPase Rab3D promotes cancer progression and metastasis. Oncotarget, 6(13), 11125-11138. doi:10.18632/oncotarget.3575
Yang, M. C., Wang, H. C., Hou, Y. C., Tung, H. L., Chiu, T. J., & Shan, Y. S. (2015). Blockade of autophagy reduces pancreatic cancer stem cell activity and potentiates the tumoricidal effect of gemcitabine. Mol Cancer, 14, 179. doi:10.1186/s12943-015-0449-3
Yang, X. Z., Li, X. X., Zhang, Y. J., Rodriguez-Rodriguez, L., Xiang, M. Q., Wang, H. Y., & Zheng, X. F. (2016). Rab1 in cell signaling, cancer and other diseases. Oncogene, 35(44), 5699-5704. doi:10.1038/onc.2016.81
Yi, Y. W., & Oh, S. (2015). Comparative analysis of NRF2-responsive gene expression in AcPC-1 pancreatic cancer cell line. Genes Genomics, 37, 97-109. doi:10.1007/s13258-014-0253-2253 [pii]
Yoon, S. O., Shin, S., & Mercurio, A. M. (2005). Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the alpha6beta4 integrin. Cancer Res, 65(7), 2761-2769. doi:10.1158/0008-5472.CAN-04-4122
Zachepilo, T. G., Il'inykh, Y. F., Lopatina, N. G., Molotkov, D. A., Popov, A. V., Savvateeva-Popova, E. V., Chesnokova, E. G. (2008). Comparative analysis of the locations of the NR1 and NR2 NMDA receptor subunits in honeybee (Apis mellifera) and fruit fly (Drosophila melanogaster, Canton-S wild-type) cerebral ganglia. Neurosci Behav Physiol, 38(4), 369-372. doi:10.1007/s11055-008-0052-9
Zeigerer, A., Bogorad, R. L., Sharma, K., Gilleron, J., Seifert, S., Sales, S., Zerial, M. (2015). Regulation of liver metabolism by the endosomal GTPase Rab5. Cell Rep, 11(6), 884-892. doi:10.1016/j.celrep.2015.04.018
Zheng, J. Y., Koda, T., Fujiwara, T., Kishi, M., Ikehara, Y., & Kakinuma, M. (1998). A novel Rab GTPase, Rab33B, is ubiquitously expressed and localized to the medial Golgi cisternae. J Cell Sci, 111 ( Pt 8), 1061-1069.
Zhou, S., Schuetz, J. D., Bunting, K. D., Colapietro, A. M., Sampath, J., Morris, J. J., Sorrentino, B. P. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med, 7(9), 1028-1034. doi:10.1038/nm0901-1028
Zhu, H., Wang, D., Liu, Y., Su, Z., Zhang, L., Chen, F., Shao, G. (2013). Role of the Hypoxia-inducible factor-1 alpha induced autophagy in the conversion of non-stem pancreatic cancer cells into CD133+ pancreatic cancer stem-like cells. Cancer Cell Int, 13(1), 119. doi:10.1186/1475-2867-13-119
Zhu, J., He, J., Liu, Y., Simeone, D. M., & Lubman, D. M. (2012). Identification of glycoprotein markers for pancreatic cancer CD24+CD44+ stem-like cells using nano-LC-MS/MS and tissue microarray. J Proteome Res, 11(4), 2272-2281. doi:10.1021/pr201059g