簡易檢索 / 詳目顯示

研究生: 胡鑫
Mir, Mujtaba Hussain
論文名稱: 再生細粒料粒徑與膠凝材與骨料比對於超高性能混凝土性質之影響
Influence of Recycled Fine Aggregate Particle Size and Binder to Aggregate Ratio on the Properties of Ultra-High Performance Concrete
指導教授: 洪崇展
Hung, Chung-Chan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2026
畢業學年度: 114
語文別: 英文
論文頁數: 177
中文關鍵詞: 超高性能混凝土(UHPC)再生細粒料(RFA)力學性質耐久性膠沙比水膠比界面轉換區(ITZ)
外文關鍵詞: Ultra-High-Performance Concrete (UHPC), Recycled Fine Aggregate (RFA), Mechanical Properties, Durability, Binder-to-Aggregate Ratio, Water-to-Binder Ratio, Interfacial Transition Zone (ITZ)
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超高性能混凝土(Ultra-High Performance concrete, UHPC)是一種新興建築材料。此材料以其卓越的力學性能而聞名,例如低滲透性、高耐久性與超過 120 MPa 之超高抗壓 強度。由於這些特性,UHPC 非常適合用於高樓建築、橋樑、海洋工程等重要基礎 設施項目。然而,生產UHPC會消耗大量資源,例如用作細粒料之天然河砂,這使得 環境因此惡化、棲息遭到破壞並增加碳排放。所幸的是,研究人員發現,從營建廢 棄物中提取再生細系料(Recycled Fine Aggregate, RFA)是能夠解決UHPC永續問題的解 決方案。RFA不僅減少了對天然資源的需求,也促進廢棄物之再利用,符合循環經 濟原則。儘管 RFA 具有環境效益,但由於其孔隙率高、密度低和界面轉換區 (Interfacial Tramsition Zone, ITZ) 較脆弱,這使得UHPC結合RFA面臨了挑戰,包含力學 性能以及耐久性之不利影響。

    本研究探討了在UHPC中添加RFA之可行性,主要透過RFA取代至多40%的天然細粒 料,並維持膠結材之用量,以進行分析。本研究將膠沙比對於UHPC之影響作為一研 究重點,具體採用了 1:1.3 和 1:0.9 兩種比率。此外,本研究採用了兩種不同粒徑範圍 的RFA:分別為1.18至2.36 mm、小於1.18 mm。透過不同粒徑分布,以分析 RFA粒徑 對於UHPC力學性質和耐久性之影響。在本研究中,所有試體均採用相同的水膠比,使得試體間之差異皆能歸於再生細粒料的用量以及膠結材-細粒料的相互作用。本研 究亦仔細調查這些因素,旨在找到UHPC使用RFA之最佳方式,於強度、耐久性和永 續性之間取得適當平衡,讓UHPC能夠於促進環保、高性能下,不失其品質。

    總而言之,儘管將RFA添加進UHPC仍面臨一些挑戰,但它為減少建築材料對環境的 影響提供了長期選擇。研究人員和工程師可以應用現代技術來克服RFA的局限性,從而創造出滿足結構和永續性標準的UHPC。本研究之評估結果強調了需在該領域加 強研究和創新的必要性,同時也展示了RFA 在推動建築業邁向更永續未來的潛力。

    Ultra-high performance Concrete (UHPC) is a modern building material renowned for its remarkable mechanical qualities, such as low permeability, great durability, and compressive strengths surpassing 120 MPa. Because of these qualities, UHPC is perfect for essential infrastructure projects like high-rise buildings, bridges, and maritime constructions. However, UHPC production is resource-intensive, relying mainly on natural fine aggregates such as river sand, which leads to environmental deterioration, habitat destruction, and higher carbon emissions. Researchers have identified Recycled Fine Aggregate (RFA) from construction and demolition debris as a sustainable solution to tackle sustainability concerns. RFA not only reduces the demand for natural resources but also promotes the reuse of waste materials, aligning with circular economic principles. Despite its environmental benefits, the incorporation of RFA in UHPC presents technical challenges due to its higher porosity, lower density, and weaker interfacial transition zone (ITZ), which can adversely affect the mechanical and durability properties of UHPC.

    This research investigates the incorporation of RFA in ultra-high performance concrete by replacing up to 40% of silica sand with RFA, while maintaining a constant amount of cementitious materials throughout the study. The study explores the influence of binder-to-aggregate ratios on the performance of UHPC, specifically using two ratios, 1:1.3 and 1:0.9, to evaluate how the proportion of binder affects the properties of UHPC when RFA is introduced. Additionally, the research utilizes two different size fractions of RFA: one with particles ranging from 1.18 mm to 2.36 mm, and the other with particles less than 1.18 mm, to analyze the impact of RFA particle size on the mechanical and durability properties of UHPC. In this research, the water-to-binder ratio is same across all mixes. This way, any changes we observe will be directly linked to the amount of recycled fine aggregate and how the binder interacts with the aggregates. By carefully adjusting these factors, we aim to find the best way to use RFA in ultra-high-performance concrete, striking the right balance between strength, durability, and sustainability. Ultimately, this research aims to contribute to the development of eco-friendly, high-performance concrete that doesn't compromise on quality.

    In conclusion, RFA offers a long-term option for reducing the environmental impact of building materials, even though integrating it into UHPC presents certain challenges. Researchers and engineers can create UHPC that satisfies structural and sustainability standards by applying contemporary techniques to overcome the limitations of RFA. This assessment emphasizes the need for greater research and innovation in this area while showcasing RFA's potential to move the construction sector closer to a more sustainable future.

    ABSTRACT iii 摘要 iv ACKNOWLEDGEMENT v TABLE OF CONTENTS vi LIST OF TABLES x LIST OF FIGURES xii CHAPTER 1 INTRODUCTION 1 1.1 Research Background 1 1.2 Research Objectives, Purposes, and Outputs 2 1.3 Research Method and Process 3 1.4 Research Scopes and Limitations 5 CHAPTER 2 LITERATURE REVIEW 7 2.1 Ultra-High Performance Concrete (UHPC) 7 2.2 Constituting Materials of UHPC 9 2.2.1 Fine Aggregate 9 2.2.2 Cement 12 2.2.3 Silica Fume (SF) 12 2.2.4 Metakaolin 13 2.2.5 Limestone Powder (LS) 14 2.2.6 Water 14 2.2.7 Superplasticizer (SP) 15 2.2.8 Steel Fiber 15 2.3 Fresh properties of UHPC with RFA 17 2.3.1 Workability 17 2.4 Mechanical and Durability Properties of UHPC with RFA 19 2.4.1 Compressive Strength 19 2.4.2 Direct Tensile Strength 22 2.4.3 Drying Shrinkage 25 2.5 Microstructural Properties of UHPC with RFA 27 2.5.1 Porosity 27 2.5.2 SEM Analysis 29 2.6 Literature Review Summary 32 Chapter 3 EXPERIMENTAL METHODS 37 3.1 Introduction 37 3.2 Materials 37 3.3 Experimental Parameters 39 3.3.1 Mix Design Parameters 39 3.3.2 RFA Parameters 42 3.4 Nomenclature ID 44 3.5 Specimen Fabrication 44 3.6 Test Parameters 47 3.6.1 Flow 47 3.6.2 Compressive Test 48 3.6.3 Direct Tensile Test 50 3.6.4 Drying Shrinkage 52 3.6.4 Porosity Test 52 3.6.5 SEM Analysis 53 3.6.6 X-ray Computed Tomography (CT) Scan 55 3.6.7 Environmental Efficiency 57 CHAPTER 4 INFLUENCE OF BINDER TO AGGREGATE RATIO 1:1.3 ON THE PROPERTIES OF UHPC INCORPORATING RFA 59 4.1 Introduction 59 4.2 Flowability 59 4.3 Compressive Strength 61 4.4 Failure Mode 63 4.5 Modulus of Elasticity 64 4.6 Direct Tensile Strength 66 4.7 Failure Mode 70 4.8 Energy Absorption 74 4.9 Drying Shrinkage 77 4.10 Porosity 78 4.10.1 Influence of Porosity on Compressive Strength and Tensile Strength 79 4.11 CT-Scan Porosity 81 4.12 SEM 85 4.13 Environmental Efficiency 87 CHAPTER 5 INFLUENCE OF BINDER TO AGGREGATE RATIO 1:0.9 ON THE PROPERTIES OF UHPC INCORPORATING RFA 91 5.1 Introduction 91 5.2 Flowability 91 5.3Compressive Strength 92 5.4 Failure Mode 94 5.5 Modulus of Elasticity 96 5.6 Direct Tensile Strength 97 5.7 Failure Mode 100 5.8 Energy Absorption 103 5.9 Drying Shrinkage 104 5.10 Porosity 106 5.10.1 Influence of Porosity on Compressive Strength and Tensile Strength 107 5.11 CT-Scan Porosity 107 5.12 SEM 111 5.13 Environmental Efficiency 113 CHAPTER 6 CONCLUSION 116 SUGGESTIONS 119 REFERENCES 120 APPENDIX A FLOW RESULTS 127 APPENDIX B COMPRESSIVE TEST RESULTS 128 APPENDIX C TENSILE TEST RESULTS 133 APPENDIX D DRYING SHRINKAGE 138 APPENDIX E POROSITY TEST RESULTS 140 APPENDIX F MODULUS OF ELASTICITY 143 APPENDIX G CT-SCAN POROSITY RESULTS 161

    1. Ahmad, S., Hakeem, I., & Azad, A. K. (2015). Effect of curing, fibre content and exposures on compressive strength and elasticity of UHPC. Advances in Cement Research, 27(4), 233–239. https://doi.org/10.1680/adcr.13.00090
    2. Ahmadi, J., Abbasnia, R., & Shekarchi, M. ([s.d.]). Evaluation of Concrete Drying Shrinkage Related to Moisture Loss Title no. 110-M22 Evaluation of Concrete Drying Shrinkage Related to Moisture Loss. Em ACI Materials Journal (Vol. 110, Número 3). https://www.researchgate.net/publication/286002799
    3. Akhnoukh, A. K., & Buckhalter, C. (2021). Ultra-high-performance concrete: Constituents, mechanical properties, applications and current challenges. Case Studies in Construction Materials, 15(June), e00559. https://doi.org/10.1016/j.cscm.2021.e00559
    4. ASTM C1856/C1856M. (2017). Standard practice for fabricating and testing specimens of ultra-high performance concrete. ASTM International, i, 1–4. https://doi.org/10.1520/C1856
    5. Bajaber, M. A., & Hakeem, I. Y. (2021a). UHPC evolution, development, and utilization in construction: a review. Journal of Materials Research and Technology, 10, 1058–1074. https://doi.org/10.1016/J.JMRT.2020.12.051
    6. Behzad Nematollahi, Raizal Saifulnaz M. R, Mohd. Saleh Jaafar, & Yen Lei Voo. (2012). A review on ultra high performance ‘ductile’ concrete (UHPdC) technology. International Journal of Civil and Structural Engineering, 2(3), 1003–1018. https://doi.org/10.6088/ijcser.00202030026
    7. Bentz, D. P., Ardani, A., Barrett, T., Jones, S. Z., Lootens, D., Peltz, M. A., Sato, T., Stutzman, P. E., Tanesi, J., & Weiss, W. J. (2015). Multi-scale investigation of the performance of limestone in concrete. Construction and Building Materials, 75, 1–10. https://doi.org/10.1016/j.conbuildmat.2014.10.042
    8. Boulekbache, B., Hamrat, M., Chemrouk, M., & Amziane, S. (2010). Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material. Construction and Building Materials, 24(9), 1664–1671. https://doi.org/10.1016/j.conbuildmat.2010.02.025
    9. Chen, K., Cheng, S., Wu, Q., Chen, X., Zhao, C., Li, S., & Lu, J. (2024a). Utilization of recycled fine aggregate in ultra-high performance concrete: Mechanical strength, microstructure and environment impacts. Construction and Building Materials, 439(July). https://doi.org/10.1016/j.conbuildmat.2024.137364
    10. Choi, D., Hong, K., Ochirbud, M., Meiramov, D., & Sukontaskuul, P. (2023). Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand. International Journal of Concrete Structures and Materials, 17(1). https://doi.org/10.1186/s40069-023-00631-2
    11. Choi, W. C., Yun, H. Do, Kang, J. W., & Kim, S. W. (2012). Development of recycled strain-hardening cement-based composite (SHCC) for sustainable infrastructures. Composites Part B: Engineering, 43(2), 627–635. https://doi.org/10.1016/j.compositesb.2011.11.060
    12. de Larrard, F., & Sedran, T. (1994). Optimization of ultra-high-performance concrete by the use of a packing model. Cement and Concrete Research, 24(6), 997–1009. https://doi.org/10.1016/0008-8846(94)90022-1
    13. Debieb, F., Courard, L., Kenai, S., & Degeimbre, R. (2010). Mechanical and durability properties of concrete using contaminated recycled aggregates. Cement and Concrete Composites, 32(6), 421–426. https://doi.org/10.1016/J.CEMCONCOMP.2010.03.004
    14. Deeb, R., Ghanbari, A., & Karihaloo, B. L. (2012). Development of self-compacting high and ultra high performance concretes with and without steel fibres. Cement and Concrete Composites, 34(2), 185–190. https://doi.org/10.1016/j.cemconcomp.2011.11.001
    15. Evangelista, L., & de Brito, J. (2007). Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites, 29(5), 397–401. https://doi.org/10.1016/J.CEMCONCOMP.2006.12.004
    16. Evangelista, L., Guedes, M., De Brito, J., Ferro, A. C., & Pereira, M. F. (2015). Physical, chemical and mineralogical properties of fine recycled aggregates made from concrete waste. Construction and Building Materials, 86, 178–188. https://doi.org/10.1016/J.CONBUILDMAT.2015.03.112
    17. Feng, Y., Zhang, B., Xie, J., Xue, Z., Huang, K., & Tan, J. (2023a). Effects of recycled sand and nanomaterials on ultra-high performance concrete: Workability, compressive strength and microstructure. Construction and Building Materials, 378(March), 131180. https://doi.org/10.1016/j.conbuildmat.2023.131180
    18. Florea, M. V. A., & Brouwers, H. J. H. (2013). Properties of various size fractions of crushed concrete related to process conditions and re-use. Cement and Concrete Research, 52, 11–21. https://doi.org/10.1016/j.cemconres.2013.05.005
    19. Gan, V. J. L., Cheng, J. C. P., & Lo, I. M. C. (2019). A comprehensive approach to mitigation of embodied carbon in reinforced concrete buildings. Journal of Cleaner Production, 229, 582–597. https://doi.org/10.1016/J.JCLEPRO.2019.05.035
    20. Ghafari, E., Costa, H., Júlio, E., Portugal, A., & Durães, L. (2012). Optimization of UHPC by adding nanomaterials. 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, January, 71–78.
    21. Graybeal, B. (2014). Design and construction of field-cast UHPC connections.
    22. Guo, Y., Gao, D., Qin, D., & Pi, H. (2025a). Properties of UHPC with totally recycled fine aggregates and its mixture design method. Journal of Building Engineering, 100. https://doi.org/10.1016/j.jobe.2025.111769
    23. Hasan, T. M., Allena, S., Sharma, Y., & Yeluri, M. (2022). Effect of Fine Aggregate Particle Size on Physical, Mechanical, and Durability Properties of Ultra-High Performance Concrete. Transportation Research Record, 2676(5), 820–830. https://doi.org/10.1177/03611981211072854
    24. Hirschi, T. Wombacher, et al. (2008). Influence of different superplasticizers on UHPC, in: Proceedings of the Second International Symposium on Ultra High Performance Concrete, Kassel University Press, Kassel, 2008, 77–84.
    25. Homayoonmehr, R., Ramezanianpour, A. A., & Mirdarsoltany, M. (2021). Influence of metakaolin on fresh properties, mechanical properties and corrosion resistance of concrete and its sustainability issues: A review. Journal of Building Engineering, 44, 103011. https://doi.org/10.1016/J.JOBE.2021.103011
    26. Huang, W., Kazemi-Kamyab, H., Sun, W., & Scrivener, K. (2017a). Effect of cement substitution by limestone on the hydration and microstructural development of ultra-high performance concrete (UHPC). Cement and Concrete Composites, 77, 86–101. https://doi.org/10.1016/j.cemconcomp.2016.12.009
    27. Huang, W., Kazemi-Kamyab, H., Sun, W., & Scrivener, K. (2017b). Effect of replacement of silica fume with calcined clay on the hydration and microstructural development of eco-UHPFRC. Materials and Design, 121, 36–46. https://doi.org/10.1016/j.matdes.2017.02.052
    28. Ivorra, S., Garcés, P., Catalá, G., Andión, L. G., & Zornoza, E. (2010). Effect of silica fume particle size on mechanical properties of short carbon fiber reinforced concrete. Materials and Design, 31(3), 1553–1558. https://doi.org/10.1016/j.matdes.2009.09.050
    29. Jiang, J., Zhou, W., Gao, Y., Wang, L., Wang, F., Chu, H. yan, Xu, G., Vandevyvere, B., Sierens, Z., & Li, J. (2019). Feasibility of manufacturing ultra-high performance cement-based composites (UHPCCs) with recycled sand: A preliminary study. Waste Management, 83, 104–112. https://doi.org/10.1016/J.WASMAN.2018.11.005
    30. Ju, M., Park, K., & Park, W. J. (2019). Mechanical Behavior of Recycled Fine Aggregate Concrete with High Slump Property in Normal- and High-Strength. International Journal of Concrete Structures and Materials, 13(1). https://doi.org/10.1186/s40069-019-0372-x
    31. Karahan, O., Hossain, K. M. A., Ozbay, E., Lachemi, M., & Sancak, E. (2012). Effect of metakaolin content on the properties self-consolidating lightweight concrete. Construction and Building Materials, 31, 320–325. https://doi.org/10.1016/j.conbuildmat.2011.12.112
    32. Li, C., Sun, H., & Li, L. (2010). A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cement and Concrete Research, 40(9), 1341–1349. https://doi.org/10.1016/j.cemconres.2010.03.020
    33. Li, Z., Zhou, X., Ma, H., & Hou, D. (2022). Advanced concrete technology. John Wiley & Sons, 2022.
    34. Liu, J., Song, S., Sun, Y., & Wang, L. (2011). Influence of ultrafine limestone powder on the performance of high volume mineral admixture reactive powder concrete. Advanced Materials Research, 152–153, 1583–1586. https://doi.org/10.4028/www.scientific.net/AMR.152-153.1583
    35. Ma, R. Y., Zhang, Z. L., Wei, J. H., Zhuo, F. Y., Zhang, H., Jiang, F., Ji, X. H., Shen, Y. N., & Zhu, J. X. (2025). Hybrid-fiber-reinforced strain-hardening ultra-high-performance concrete (SH-UHPC) with recycled fine aggregates. Case Studies in Construction Materials, 22. https://doi.org/10.1016/j.cscm.2025.e04869
    36. Meng, W., Valipour, M., & Khayat, K. H. (2017). Optimization and performance of cost-effective ultra-high performance concrete. Materials and Structures/Materiaux et Constructions, 50(1), 1–16. https://doi.org/10.1617/s11527-016-0896-3
    37. Mishra, O., & Singh, S. P. (2019). An overview of microstructural and material properties of ultra-high-performance concrete. Em Journal of Sustainable Cement-Based Materials (Vol. 8, Número 2, p. 97–143). Taylor and Francis Ltd. https://doi.org/10.1080/21650373.2018.1564398
    38. Mo, Z., Wang, R., & Gao, X. (2020). Hydration and mechanical properties of UHPC matrix containing limestone and different levels of metakaolin. Construction and Building Materials, 256, 119454. https://doi.org/10.1016/j.conbuildmat.2020.119454
    39. Müller, H. S., Haist, M., & Vogel, M. (2014). Assessment of the sustainability potential of concrete and concrete structures considering their environmental impact, performance and lifetime. Construction and Building Materials, 67(PART C), 321–337. https://doi.org/10.1016/j.conbuildmat.2014.01.039
    40. Nedeljković, M., Visser, J., Šavija, B., Valcke, S., & Schlangen, E. (2021). Use of fine recycled concrete aggregates in concrete: A critical review. Journal of Building Engineering, 38(May 2020). https://doi.org/10.1016/j.jobe.2021.102196
    41. Ossa, A., García, J. L., & Botero, E. (2016). Use of recycled construction and demolition waste (CDW) aggregates: A sustainable alternative for the pavement construction industry. Journal of Cleaner Production, 135, 379–386. https://doi.org/10.1016/J.JCLEPRO.2016.06.088
    42. Pedro, D., De Brito, J., & Evangelista, L. (2014). Influence of the use of recycled concrete aggregates from different sources on structural concrete. Construction and Building Materials, 71, 141–151. https://doi.org/10.1016/J.CONBUILDMAT.2014.08.030
    43. Pepe, M., Toledo Filho, R. D., Koenders, E. A. B., & Martinelli, E. (2014). Alternative processing procedures for recycled aggregates in structural concrete. Construction and Building Materials, 69, 124–132. https://doi.org/10.1016/j.conbuildmat.2014.06.084
    44. Poon, C. S., Shui, Z. H., & Lam, L. (2004). Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Construction and Building Materials, 18(6), 461–468. https://doi.org/10.1016/J.CONBUILDMAT.2004.03.005
    45. Reddy Babu, G., Madhusudana Reddy, B., & Venkata Ramana, N. (2018). Quality of mixing water in cement concrete “a review”. Materials Today: Proceedings, 5(1), 1313–1320. https://doi.org/10.1016/J.MATPR.2017.11.216
    46. Rezvani, M., Proske, T., & Graubner, C. A. (2019). Modelling the drying shrinkage of concrete made with limestone-rich cements. Cement and Concrete Research, 115(March 2018), 160–175. https://doi.org/10.1016/j.cemconres.2018.09.003
    47. Schröfl, C., Gruber, M., & Plank, J. (2012). Preferential adsorption of polycarboxylate superplasticizers on cement and silica fume in ultra-high performance concrete (UHPC). Cement and Concrete Research, 42(11), 1401–1408. https://doi.org/10.1016/j.cemconres.2012.08.013
    48. Shahidan, S., Tayeh, B. A., Jamaludin, A. A., Bahari, N. A. A. S., Mohd, S. S., Zuki Ali, N., & Khalid, F. S. (2017). Physical and mechanical properties of self-compacting concrete containing superplasticizer and metakaolin. IOP Conference Series: Materials Science and Engineering, 271(1). https://doi.org/10.1088/1757-899X/271/1/012004
    49. Shi, C., Wu, Z., Xiao, J., Wang, D., Huang, Z., & Fang, Z. (2015). A review on ultra high performance concrete: Part I. Raw materials and mixture design. Construction and Building Materials, 101, 741–751. https://doi.org/10.1016/j.conbuildmat.2015.10.088
    50. Shi, Y., Long, G., Zeng, X., Xie, Y., & Wang, H. (2021). Green ultra-high performance concrete with very low cement content. Construction and Building Materials, 303. https://doi.org/10.1016/j.conbuildmat.2021.124482
    51. Siddique, R. (2011). Utilization of silica fume in concrete: Review of hardened properties. Resources, Conservation and Recycling, 55(11), 923–932. https://doi.org/10.1016/j.resconrec.2011.06.012
    52. Siddique, R., & Khan, M. I. (2011). Supplementary Cementing Materials, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011: pp. 67–119. doi: 10.1007/978-3-642-17866-5_2.
    53. Smith, J. T. (2018). Smith, James Trevor. “Recycled concrete aggregate-A viable aggregate source for concrete pavements.” PhD diss., University of Waterloo, 2009.
    54. Tayeh, B. A., Aadi, A. S., Hilal, N., Bakar, B. H. A., Al-Tayeb, M. M., & Mansour, W. (2019). Properties of Ultra-High-Performance Fiber-Reinforced Concrete (UHPFRC) -A Review Paper.
    55. Tiburzi, N. B., Garcia, J., Drimalas, T., & Folliard, K. J. (2019). Sulfate resistance of portland-limestone cement systems containing greater than 15% limestone. Cement and Concrete Composites, 100(March), 60–73. https://doi.org/10.1016/j.cemconcomp.2019.03.024
    56. Verian, K. P., Ashraf, W., & Cao, Y. (2018). Properties of recycled concrete aggregate and their influence in new concrete production. Em Resources, Conservation and Recycling (Vol. 133, p. 30–49). Elsevier B.V. https://doi.org/10.1016/j.resconrec.2018.02.005
    57. Wang, F., & Gao, D. (2023). Tensile behavior analysis and prediction of steel fiber recycled fine aggregate concrete. Structures, 55, 2232–2248. https://doi.org/10.1016/j.istruc.2023.07.010
    58. Wang, S., Bo Wang, H. Z., Gang Chen, B., & Zongze Li, Lin Yang, Yakun Zhang, X. Z. (2023). UHPC Mix design, raw materials and curing.pdf.
    59. Wang, S., Wang, B., Zhu, H., Chen, G., Li, Z., Yang, L., Zhang, Y., & Zhou, X. (2023). Ultra-high performance concrete: Mix design, raw materials and curing regimes-A review. Materials Today Communications, 35(November 2022), 105468. https://doi.org/10.1016/j.mtcomm.2023.105468
    60. Wille, K., El-Tawil, S., & Naaman, A. E. (2014). Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. Cement and Concrete Composites, 48, 53–66. https://doi.org/10.1016/J.CEMCONCOMP.2013.12.015
    61. Wu, L., Farzadnia, N., Shi, C., Zhang, Z., & Wang, H. (2017). Autogenous shrinkage of high performance concrete: A review. Em Construction and Building Materials (Vol. 149, p. 62–75). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2017.05.064
    62. Xie, J., Kou, S. cong, Ma, H., Long, W. J., Wang, Y., & Ye, T. H. (2021). Advances on properties of fiber reinforced recycled aggregate concrete: Experiments and models. Construction and Building Materials, 277, 122345. https://doi.org/10.1016/j.conbuildmat.2021.122345
    63. Xu, G., Shen, W., Zhang, B., Li, Y., Ji, X., & Ye, Y. (2018). Properties of recycled aggregate concrete prepared with scattering-filling coarse aggregate process. Cement and Concrete Composites, 93, 19–29. https://doi.org/10.1016/J.CEMCONCOMP.2018.06.013
    64. Yang, J., Peng, G. F., Gao, Y. X., & Zhang, H. (2015). Mechanical properties and durability of ultra-high performance concrete incorporating coarse aggregate. Key Engineering Materials, 629–630, 96–103. https://doi.org/10.4028/www.scientific.net/KEM.629-630.96
    65. Yu, L., Huang, L., & Ding, H. (2019e). Rheological and mechanical properties of ultra-high-performance concrete containing fine recycled concrete aggregates. Materials, 12(22). https://doi.org/10.3390/ma12223717
    66. Zaharieva, R., Buyle-Bodin, F., Skoczylas, F., & Wirquin, E. (2003). Assessment of the surface permeation properties of recycled aggregate concrete. Cement and Concrete Composites, 25(2), 223–232. https://doi.org/10.1016/S0958-9465(02)00010-0
    67. Zhang, B., Ji, T., Ma, Y., Yang, Y., & Hu, Y. (2022). Workability and Strength of Ultra-High-Performance Concrete Containing Nano-Ca(OH)2-Modified Recycled Fine Aggregate. ACI Materials Journal, 119(5), 165–174. https://doi.org/10.14359/51735953
    68. Zhang, D., Zhou, J., Sun, Q., Ji, T., Liang, Y., Weng, Y., Lan, J., & Wu, X. (2024a). Mechanical properties and early-age shrinkage of ultra-high performance concrete mortar with recycled fine aggregate. Journal of Building Engineering, 98. https://doi.org/10.1016/j.jobe.2024.111254
    69. Zhang, H., Ji, T., Zeng, X., Yang, Z., Lin, X., & Liang, Y. (2018a). Mechanical behavior of ultra-high performance concrete (UHPC) using recycled fine aggregate cured under different conditions and the mechanism based on integrated microstructural parameters. Construction and Building Materials, 192, 489–507. https://doi.org/10.1016/j.conbuildmat.2018.10.117
    70. Zhang, Z., Zhang, B., & Yan, P. (2016). Hydration and microstructures of concrete containing raw or densified silica fume at different curing temperatures. Construction and Building Materials, 121, 483–490. https://doi.org/10.1016/j.conbuildmat.2016.06.014
    71. Zhou, Y., Guo, D., Xing, F., & Guo, M. (2021a). Multiscale mechanical characteristics of ultra-high performance concrete incorporating different particle size ranges of recycled fine aggregate. Construction and Building Materials, 307(October). https://doi.org/10.1016/j.conbuildmat.2021.125131

    QR CODE