簡易檢索 / 詳目顯示

研究生: 鄭文賢
Cheng, Wen-Hsieh
論文名稱: 磷酸鈣粉末製程及性質研究
Process and Properties of Calcium Phosphate Powder
指導教授: 朱建平
Ju, Chien-Ping
陳瑾惠
Chern Lin, Jiin-Huey
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 88
中文關鍵詞: 磷酸鈣溼式化學反應煅燒
外文關鍵詞: calcine, wet-chemical reaction, calcium phosphate
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   人類能直立行走靠得是骨骼為支架稱起人體,但當因遺傳、疾病、意外及損害造成骨骼損傷、缺陷而喪失其功能性時,則需人工骨骼材料加以填補修復,現今人工骨骼材料相當廣泛,包括金屬、陶瓷跟高分子等材料,而其中以磷酸鈣鹽類具生物可吸收性的特性最受各界所注目,相關研究也日益增加。

      在所有的磷酸鈣鹽類中又以三鈣磷酸鹽及四鈣磷酸鹽最受重視,除了具生物可吸收性外,其初期硬化具高強度、可注射性、最終產物和人體骨相似均為其特點。然而現今製造三鈣磷酸鹽及四鈣磷酸鹽方式大多為固相燒結方式配合研磨獲取磷酸鈣粉末,不僅耗時費力,機械耗損及汙染問題也是需克服的條件。

      本實驗為利用溼化學析出方式,先以各種不同種類之鈣磷化合物來獲取與四鈣磷酸鹽鈣磷比例相似的析出前趨物,再配合煅燒方式燒除揮發性物質得到四鈣磷酸鹽粉末。在析出反應過程中當pH=12所獲得的前趨物鈣磷比例接近2,於高溫煅燒後粉末為分散粉末,粉末形態平均為大小約82nm的球狀體,和現今燒結製造方式具相當大差異。

      The human can walk because the skeleton support human body. It needs article skeleton materials to repair the damage position when the skeleton get hurt and lose its work by hereduty, disease, accident and damage. There are several kinds of article skeleton materials, include of metal, ceramic and polymer materials. All of them are focus on calcium phosphate because it could be absorb by human body.

      The calcium phosphate, tricalcium phosphate and tetracalcium phosphate, not only the property of absorption by human bady but also its high initial compress strength, injectable, and the final production closed to the human skeleton. But the disadvantage of them are that the process to produce tri- and tetra- calcium phosphate were solid-state reaction with high temperature sintering reaction. After sintering , it also needs to grind to tiny particle.

      This research used wet-chemical precipitation reaction method to get precursor that similar to TTCP with different calcium source and phosphate source, following to calcine to get tetracalcium phosphate. From the precipitation reaction process at pH=12, we can get the precursor with Ca/P range close to 2 and after calcining the poeder were all disperse , and the average range of disperse powder were 82nm.

    摘要 ………………………………………………………………… I 總目錄 ………………………………………………………………… II 圖目錄 ………………………………………………………………… V 表目錄 ………………………………………………………………… VII 第一章 前言…………………………………………………………… 1 1-1 前言…………………………………………………………… 1 1-2 實驗目的……………………………………………………… 2 第二章 理論基礎與文獻回顧………………………………………… 6 2-1 生醫材料敘論………………………………………………… 6 2-2 奈米材料製作方式…………………………………………… 7 2-2-1 化學析出法…………………………………………………… 8 2-2-2 溶膠-凝膠法………………………………………………… 9 2-2-3 水熱法………………………………………………………… 12 2-3 氫氧基磷灰石特性…………………………………………… 13 2-3-1 氫氧基磷灰石基本特性……………………………………… 13 2-3-2 氫氧基磷灰石結構…………………………………………… 13 2-4 非晶質磷酸鈣鹽類…………………………………………… 14 2-4-1 非晶質磷酸鈣鹽類的基本性質……………………………… 14 2-4-2 非晶質磷酸鈣鹽類的結構…………………………………… 15 2-5 四鈣磷酸鹽…………………………………………………… 15 2-5-1 四鈣磷酸鹽的基本性質……………………………………… 15 2-5-2 四鈣磷灰石的製作方式與熱性質…………………………… 16 2-6 成核結晶理論………………………………………………… 17 2-6-1 成核熱力學理論……………………………………………… 17 2-6-2 晶體成長……………………………………………………… 18 第三章 實驗步驟……………………………………………………… 27 3-1 實驗原料簡介………………………………………………… 27 3-2 新材料開發測試流程………………………………………… 27 3-2-1 TTCP粉末製作流程…………………………………………… 27 3-2-1-1 不同鈣源及磷源測試………………………………………… 27 3-2-1-2 不同鈣源及磷源,及添加其他離子影響測試……………… 28 3-2-1-3 其他析出反應測試…………………………………………… 29 3-2-1-4 煅燒處理測試………………………………………………… 31 3-2-2 磷酸鈣粉末基本性質………………………………………… 32 3-2-2-1 X光繞射分析…………………………………………………… 32 3-2-2-2 掃瞄式電子顯微鏡分析……………………………………… 32 3-2-2-3 霍式紅外線光譜(FTIR)分析………………………………… 32 3-2-2-4 能譜儀(EDS)分析……………………………………………… 33 第四章 實驗結果與分析………………………………………………… 42 4-1 不同鈣源和磷酸根源測試……………………………………… 42 4-1-1 不同鈣源和磷酸根源析出物結果……………………………… 42 4-1-2 不同鈣源和磷酸根源析出粉末XRD相分析…………………… 43 4-1-3 不同鈣源和磷酸根源析出粉末紅外線光譜分析……………… 44 4-1-4 不同鈣源和磷酸根源析出粉末EDS分析……………………… 46 4-1-5 不同鈣源和磷酸根源析出粉末SEM分析……………………… 47 4-2 不同鈣源及磷源及添加其他離子影響測試結果……………… 60 4-3 其他析出反應測試結果………………………………………… 65 4-3-1 有機溶液析出反應測試結果…………………………………… 65 4-3-2 OCP粉末碳酸根化測試結果…………………………………… 65 4-4 煅燒處理測試結果……………………………………………… 70 4-4-1 不同鈣磷比例煅燒處理結果…………………………………… 70 4-4-2 不同升溫速率煅燒處理結果…………………………………… 71 4-4-3 低溫煅燒處理結果……………………………………………… 72 第五章 結論……………………………………………………………… 82 第六章 參考資料………………………………………………………… 84

    Brinker C.J., “Hydrosis and condensation of silicates:effect on structure”, Journal of Non-Crystalline Solids 100 (1998) 31~50

    Bigi A., Boanini E., Botter R., Panzavolta S., Rubini K. “a-Tricalcium phosphate hydrolysis to octacalcium phosphate: effect of sodium polyacrylate”, Biomaterials 23 (2002), 1849~1854

    Chow L.C., “Development of self-setting calcium phosphate cement”, The Centennial Memorial Issue 99 (1991) 954~964

    Chow L.C., Markovic M., Frukhtbeyn S.A., Takagi S., “Hydrolysis of tetracalcium phosphate under a near-constant-composition-effect of pH and particle size”, Biomaterials, In Press, Corrected Proof, Available online 9 April 2004

    Dickens B., Brown W.E., Kruger G.J., Stewart J.M., “Ca4(PO4)2O, Tetracalcium Diphosphate Monoxide. Crystal Structure and Relationship to Ca5(PO4)3OH and K3Na(SO4)2”, Acta Cryst B29(1973),2046~2057

    Driessens F.C.M., Boltong M.G., de Maeyer E.A.P., Wenz R., Nies B., Planell J.A., “The Ca/P range of nanoapatitic calcium phosphate cement”, Biomaterials 23 (2002) 4011~4017

    Elliot J.C., “Structure and Chemistry of the Apatites and Other Calcium Orthophosphates”, Elsevier, Amsterdam, 1994.

    Elwell D., Schell H.J., “Crystal Growth from High-Temperature Solutiona,” Academic Press, Inc., 150, (1975)

    Gross K.A., Chai CS, Kannangara GSK, Bin-Nissan B, Hanley L.Thin hydroxyapatite coatings via sol-gel synthesis. J Mater Sci Mater Med 1998;9:839~843.

    Hench Larry L, “Sol-gel materials for bioceramic applications”, Solid state & materials science 2 (1997) 604-610
    Jillavenkatesa A., Condrate R.A.“Sol-gel processing of hydroxyapatite.” J Mater Sci 33 (1998), 4111~4119.

    Jinawath S., Pongkao D., Suchanek W., Yoshimura M.,“Hydrothermal synthesis of monetite and hydroxyapatite from monocalcium phosphate monohydrate”, International Journal of Inorganic Materials 3 (2001) 997–1001

    Kay M.I., Young R.A., Posner A.S, “Crystal structure of hydroxyapatite”, Nature 204 (1964) 1050~1052

    Koutsopoulos S.,”Synthesis and characterization of hydroxyapatite crystal: A review study on analytical methods”, 2002 Wiley periodicals, Inc.

    Leeuwenburgh S.C.G., Wolke J.G.C., Schoonman J., Jansen J.A., “Influence of precursor solution parameters on chemical properties of calcium phosphate coatings prepared using Eletrostatic Spray Deposition (ESD)”, Biomaterials 25 (2004) 641~649

    LeGeros R.Z. “Calcium Phosphates in Oral Biology and Medicine”, Karger, Basel, 1991.

    Lin Feng-Huei, Liao Chun-Jen, Chen Ko-Shao, Sun Jui-Sheng, “Thermal reconstruction behavior of the quenched hydroxyapatite powder during reheating in air”, Materials Science and Engineering C 13 2000 97~104

    Liu D.M., Troczynski T., Tseng W.J., “Water-based sol-gel synthesis of hydroxyapatite: process development.” Biomaterials 22 (2001) 1721-1730

    Liu Jingbing, Ye Xiaoyue, Wang Hao, Zhu Mankang, Wang Bo, Yan Huiv, “The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method”, Ceramics International 29 (2003),629-633

    Mathai Mathew, Shozo Takagi, “Structure of biological Minerals in dental research”, J. Res. Natl. Inst. Stand. Technol. 106 (2001),1035-1044
    Saeri M.R., Afshar A., Ghorbani M., Ehsani N.,Sorrell C.C. , “The wet precipitation process of hydroxyapatite”, Materials Letters 57 (2003),4064~4069

    Sargin Y., Kizilyalli M., Telli C., Guler H., “A new method for the solid-state synthesis of tetracalcium phosphate, a dental cement:X-ray powder diffraction and IR studies”, Journal of European Ceramic Society 17 (1997) 963~970

    Sergey V. Dorozhkin and Matthias Epple, ”Biological and Medical Significance of Calcium Phosphates”, Angew. Chem. Int. Ed 41 (2002) 3130~3146

    Sonoda K., Furuzono T., Walsh D., Sato K., Tanaka J., “Influence of emulsion on crystal growth of hydroxyapatite”, Solid State Ionics 151 (2002) 321~327

    Tadic D., Peters F., Epple M., “Continuous synthesis of amorphous carbonated apatites”, Biomaterials 23 (2002) 2553~2559

    Verhoeven J.D., Fundamentals of physical metallurgy 1th, 1975 p220~227

    William J. Dawson, “Hydrothermal Synthesis of Advanced Ceramic Powders,” Ceram. Bull., 67[10] (1998) 1673-1678

    Ying, Nanocrystalline apatites and composite prostheses incorporating them, and method for their production ,US patent 6013591,2000

    汪建民主編, 陶瓷技術手冊(上)、(下), 中華民國粉末冶金協會,中華民國83年7月

    周邦彥, 骨科生醫材料之發展與應用, 技術與訓練27卷4期 (2002) 163~171

    黃聖哲, SiO2 對奈米級錳鋅鐵氧磁體粉末燒結及燒結體性質之影響, 成功大學碩士論文, 2002

    張立得、牟季美, 奈米材料和奈米結構,滄海書局,中華民國91年6月

    下載圖示 校內:2007-07-29公開
    校外:2007-07-29公開
    QR CODE