簡易檢索 / 詳目顯示

研究生: 莊柏筠
Chuang, Po-Yun
論文名稱: 分子作用力與分子量對團聯共聚物混摻物相行為及結晶行為的影響
Effects of Molecular Interactions and Molecular Weights on the Phase and Crystallization Behaviors of Block Copolymer Blends
指導教授: 羅介聰
Lo, Chieh-Tsung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 123
中文關鍵詞: 團聯共聚物相行為非等溫結晶氫鍵混摻
外文關鍵詞: block copolymer, phase behavior, nonisothermal crystallization, hydrogen bonding, blends
相關次數: 點閱:152下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究探討不同分子量之團聯共聚物poly(styrene-block-ethylene oxide) (PS-b-PEO)與對稱型及非對稱型poly(styrene-block-acrylic acid) (PS-b-PAA)混摻之相行為與非等溫結晶動力學。以中、低分子量之PS-b-PEO混摻PS-b-PAA,結果顯示大部分的PEO與PAA鏈段形成分子間氫鍵,具有良好之相容性。但在大分子量之PS-b-PEO/PS-b-PAA混摻系統中,無論混摻對稱型或非對稱型PS-b-PAA,皆受到退火溫度及巨觀相分離的影響,使其氫鍵比例下降較多。
      不同分子量之PS-b-PEO與PS-b-PAA混摻會產生不同型態的微相結構。小分子量之PS-b-PEO混摻對稱型PS-b-PAA,PEO與PAA之間之氫鍵作用力使PS-b-PEO之微相結構由無序轉變成有序;中分子量之PS-b-PEO混摻系統則是維持層狀結構;而大分子量之PS-b-PEO混摻對稱型PS-b-PAA後,則是因為兩高分子分子量之差異,故在20% PS-b-PAA添加量時混摻物出現巨觀相分離。在非對稱型混摻系統中,低分子量之PS-b-PEO在摻入PS-b-PAA後,隨著PS-b-PAA添加量的增加,其結構由無序轉變為球狀再轉變為層狀。中分子量之PS-b-PEO則是由於添加具長鏈段PS之PS-b-PAA,使PS微相的體積上升較多,故結構由層狀轉為柱狀。而大分子量之PS-b-PEO混摻非對稱型PS-b-PAA後,同樣由於兩高分子分子量差異大,因此相容性較差,故當PS-b-PAA占整體混摻系統40%時出現巨觀相分離。
      由混摻物結晶行為可發現,不同分子量之PS-b-PEO混摻PS-b-PAA後,會因PAA之Tg效應及PEO與PAA之間的氫鍵作用力,造成PEO的結晶溫度、結晶度及結晶速率隨著PS-b-PAA添加量增加而下降。此外,大分子量之混摻系統與中、低分子量之混摻系統相比,其PEO結晶受到氫鍵作用力與PAA之Tg效應之影響較小。

    We investigated the phase and crystallization behaviors of blends composed of poly(styrene-block-ethylene oxide) (PS-b-PEO) and poly(styrene-block-acrylic acid) (PS-b-PAA). When low-molecular-weight and medium-molecular-weight PS-b-PEO was blended with PS-b-PAA, most PEO chains formed hydrogen bonds with PAA chains, leading to the favorable compatibility of the copolymers. By contrast, the fraction of the hydrogen bonded PEO/PAA in the blends composed of high-molecular-weight PS-b-PEO was low, which was caused by the poor compatibility of the two copolymers and high annealing temperature.
    The morphology of PS-b-PEO/PS-b-PAA blends strongly depended on the molecular weight of PS-b-PEO. When low-molecular-weight PS-b-PEO was mixed with symmetric PS-b-PAA, morphology of the blends changed from disorder to hexagonally packed cylinders because of the hydrogen-bonding interactions. In the blends containing medium-molecular-weight PS-b-PEO and symmetric PS-b-PAA, the morphology of the blends retained lamellae. By contrast, the high-molecular-weight PS-b-PEO/symmetric PS-b-PAA blends exhibited macrophase separation, which was induced by the high segregation strength of the blends. On the other hand, when low-molecular-weight PS-b-PEO was blended with asymmetric PS-b-PAA, the morphology of the blends changed from disorder to spheres, and to lamellae with an increase in the PS-b-PAA content. In the blends comprising medium-molecular-weight PS-b-PEO and asymmetric PS-b-PAA with long PS chains, the volume change in the PS microdomains with the addition of PS-b-PAA was more than that in the PEO/PAA microdomains, which resulted in the morphological transition from lamellae to cylinders. Similar to the high-molecular-weight PS-b-PEO/symmetric PS-b-PAA blends, the segregation strength of the high-molecular-weight PS-b-PEO/asymmetric PS-b-PAA blends was high, thereby causing macrophase separation of the two copolymers when 40 wt% PS-b-PAA was added.
    Regarding the crystallization behavior of the PS-b-PEO/PS-b-PAA blends, the crystallization temperature, overall crystallization rate, and degree of crystallinity of PEO decreased with the addition of PS-b-PAA, which was attributed to the hydrogen-bonding interactions and high glass transition temperature (Tg) of PAA that hindered PEO crystallization.

    摘要 I 目錄 IX 表目錄 XIV 圖目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1共聚物(copolymer) 3 2.2 高分子混摻系統 4 2.2.1雙團聯共聚物之微相分離 4 2.2.2高分子混摻之微相分離 6 2.2.3高分子混摻之氫鍵作用力 7 2.2.4 高分子混摻中微相域的變化 12 2.3高分子結晶行為 21 2.3.1等溫結晶動力學 23 2.3.2非等溫結晶動力學 25 2.3.3氫鍵對高分子結晶之影響 28 2.3.4結晶性高分子之微相分離與結晶行為 30 第三章 實驗 36 3.1 藥品 36 3.2 實驗步驟 37 3.3 實驗流程圖 39 3.4 分析儀器 40 3.4.1 小角度X光散射儀 40 3.4.2 傅立葉轉換紅外光譜 41 3.4.3 微差熱掃描卡計 41 第四章 結果與討論 42 4.1 不同分子量之PS-b-PEO與對稱型PS-b-PAA混摻的氫鍵強度 42 4.1.1 PS-b-PEO (Mn = 3000-b-3000 g/mol)/PS-b-PAA (Mn = 5200-b-4000 g/mol)混摻系統 43 4.1.2 PS-b-PEO (Mn = 10000-b-11500 g/mol)/PS-b-PAA (Mn = 5200-b-4000 g/mol)混摻系統 46 4.1.3 PS-b-PEO (Mn = 40000-b-35000 g/mol)/PS-b-PAA (Mn = 5200-b-4000 g/mol)混摻系統 48 4.1.4 PS-b-PEO (Mn = 59000-b-72000 g/mol)/PS-b-PAA (Mn = 5200-b-4000 g/mol)混摻系統 51 4.2不同分子量之PS-b-PEO與對稱型PS-b-PAA混摻物的相行為 54 4.2.1 PS-b-PEO (Mn = 3000-b-3000 g/mol)與PS-b-PAA (Mn = 5200-b-4000 g/mol)混摻系統 54 4.2.2 PS-b-PEO (Mn = 10000-b-11500 g/mol)與PS-b-PAA (Mn = 5200-b-4000 g/mol)混摻系統 57 4.2.3 PS-b-PEO (Mn = 40000-b-35000 g/mol)與PS-b-PAA (Mn = 5200-b-4000 g/mol)混摻系統 60 4.2.4 PS-b-PEO (Mn = 59000-b-72000 g/mol)與PS-b-PAA (Mn = 5200-b-4000 g/mol)混摻系統 62 4.3 不同分子量之PS-b-PEO與對稱型PS-b-PAA混摻物之結晶行為 65 4.3.1 PS-b-PEO (Mn = 3000-b-3000 g/mol) / PS-b-PAA (Mn = 5200-b-4000 g/mol)之非等溫結晶 65 4.3.2 PS-b-PEO (Mn = 10000-b-11500 g/mol) / PS-b-PAA (Mn = 5200-b-4000 g/mol)之非等溫結晶 70 4.3.3 PS-b-PEO (Mn = 40000-b-35000 g/mol) / PS-b-PAA (Mn = 5200-b-4000 g/mol)之非等溫結晶 74 4.3.4 PS-b-PEO (Mn = 59000-b-72000 g/mol) / PS-b-PAA (Mn = 5200-b-4000 g/mol)之非等溫結晶 78 4.4 不同分子量之PS-b-PEO與非對稱型PS-b-PAA混摻的氫鍵強度 81 4.4.1 PS-b-PEO (Mn = 3000-b-3000 g/mol)/PS-b-PAA (Mn = 15000-b-4300 g/mol)混摻系統 81 4.4.2 PS-b-PEO (Mn = 10000-b-11500 g/mol)/PS-b-PAA (Mn = 15000-b-4300 g/mol)混摻系統 83 4.4.3 PS-b-PEO (Mn = 40000-b-35000 g/mol)/PS-b-PAA (Mn = 15000-b-4300 g/mol)混摻系統 85 4.4.4 PS-b-PEO (Mn = 59000-b-72000 g/mol)/PS-b-PAA (Mn = 15000-b-4300 g/mol)混摻系統 87 4.5不同分子量之PS-b-PEO與非對稱型PS-b-PAA混摻物的相行為 90 4.5.1 PS-b-PEO (Mn = 3000-b-3000 g/mol)與PS-b-PAA (Mn = 15000-b-4300 g/mol)混摻系統 90 4.5.2 PS-b-PEO (Mn = 10000-b-11500 g/mol)與PS-b-PAA (Mn = 15000-b-4300 g/mol)混摻系統 93 4.5.3 PS-b-PEO (Mn = 40000-b-35000 g/mol)與PS-b-PAA (Mn = 15000-b-4300 g/mol)混摻系統 96 4.5.4 PS-b-PEO (Mn = 59000-b-72000 g/mol)與PS-b-PAA (Mn = 15000-b-4300 g/mol)混摻系統 98 4.6 不同分子量之PS-b-PEO與非對稱型PS-b-PAA混摻物之結晶行為 100 4.6.1 PS-b-PEO (Mn = 3000-b-3000 g/mol)/PS-b-PAA (Mn = 15000-b-4300 g/mol)之非等溫結晶 100 4.6.2 PS-b-PEO (Mn = 10000-b-11500 g/mol)/PS-b-PAA (Mn = 15000-b-4300 g/mol)之非等溫結晶 104 4.6.3 PS-b-PEO (Mn = 40000-b-35000 g/mol) / PS-b-PAA (Mn = 15000-b-4300 g/mol)之非等溫結晶 108 4.6.4 PS-b-PEO (Mn = 59000-b-72000 g/mol)/PS-b-PAA (Mn = 15000-b-4300 g/mol)之非等溫結晶 112 第五章 結論 115 第六章 參考文獻 117

    [1] S.-C. Chen, S.-W. Kuo, U. S. Jeng, C.-J. Su, and F.-C. Chang, "On Modulating the Phase Behavior of Block Copolymer/Homopolymer Blends via Hydrogen Bonding," Macromolecules, 43, 1083-1092, 2010.
    [2] J.-T. Xu, J. P. A. Fairclough, S.-M. Mai, A. J. Ryan, and C. Chaibundit, "Isothermal crystallization kinetics and melting behavior of poly (oxyethylene)-b-poly (oxybutylene)/poly (oxybutylene) blends," Macromolecules, 35, 6937-6945, 2002.
    [3] W.-C. Chen, S.-W. Kuo, C.-H. Lu, U.-S. Jeng, and F.-C. Chang, "Self-assembly structures through competitive interactions of crystalline− amorphous diblock copolymer/homopolymer blends: Poly (ε-caprolactone-b-4-vinyl pyridine)/Poly (vinyl phenol)," Macromolecules, 42, 3580-3590, 2009.
    [4] S.-W. Kuo, S.-C. Chan, and F.-C. Chang, "Effect of hydrogen bonding strength on the microstructure and crystallization behavior of crystalline polymer blends," Macromolecules, 36, 6653-6661, 2003.
    [5] M. W. Matsen and F. S. Bates, "Unifying weak- and strong-segregation block copolymer theories," Macromolecules, 29, 1091-1098, 1996.
    [6] F. S. Bates and G. H. Fredrickson, "Block copolymers - Designer soft materials," Physics Today, 52, 32-38, 1999.
    [7] F. S. Bates and G. H. Fredrickson, "Block copolymer thermodynamics-theory and experiment," Annual Review of Physical Chemistry, 41, 525-557, 1990.
    [8] F. S. Bates, "Polymer-polymer phase behavior," Science, 251, 898-905, 1991.
    [9] K. W. Guarini, C. T. Black, and S. H. I. Yeuing, "Optimization of diblock copolymer thin film self assembly," Advanced Materials, 14, 1290, 2002.
    [10] E. Helfand, "Block copolymer theory. 3. Statistical-mechanics of microdomain structure," Macromolecules, 8, 552-556, 1975.
    [11] L. Leibler, "Theory of microphase separation in block copolymers," Macromolecules, 13, 1602-1617, 1980.
    [12] L. M. Robeson, "Polymer blends," Hanser, Munich, 24-149, 2007.
    [13] C. R. Chiang and F. C. Chang, "Polymer Blends of Polyamide-6 (PA6) and Poly(phenyleneether) (PPE) Compatibilized by a MultifunctionalEpoxy Coupler," Journal of Polymer Science Part B: Polymer Physics, 1998.
    [14] S. Krause, "Polymer-polymer miscibility," Pure and Applied Chemistry, 58, 1553-1560, 1986.
    [15] W. H. Jo and S. C. Lee, "Miscibility of poly (ethylene oxide) and poly (styrene-co-acrylic acid) blends," Macromolecules, 23, 2261-2265, 1990.
    [16] T. Nishi and T. T. Wang, "Melting-point depression anad kinetic effects of cooling on crystallization in poly(vinylidene fluoride) poly(methyl methacrylate) mixtures," Macromolecules, 8, 909-915, 1975.
    [17] J. Y. Lee, P. C. Painter, and M. M. Coleman, "Hydrogen bonding in polymer blends. 3. Blends involving polymers containing methacrylic acid and ether groups," Macromolecules, 21, 346-354, 1988.
    [18] H. Tanaka, H. Hasegawa, and T. Hashimoto, "Ordered structure in mixtures of a block copolymer and homopolymers. I, Solubilization of low molecular weight homopolymers," Macromolecules, 24, 240-251, 1991.
    [19] C. Luo, X. Han, Y. Gao, H. Liu, and Y. Hu, "Crystallization behavior of “wet brush” and “dry brush” blends of PS‐b‐PEO‐b‐PS/h‐PEO," Journal of Applied Polymer Science, 113, 907-915, 2009.
    [20] W. C. Chen, S. W. Kuo, and F. C. Chang, "Self-assembly of an A-B diblock copolymer blended with a C homopolymer and a C-D diblock copolymer through hydrogen bonding interaction," Polymer, 51, 4176-4184, 2010.
    [21] S. H. Han, V. Pryamitsyn, D. Bae, J. Kwak, V. Ganesan, and J. K. Kim, "Highly asymmetric lamellar nanopatterns via block copolymer blends capable of hydrogen bonding," ACS nano, 6, 7966-7972, 2012.
    [22] S. H. Han, J. K. Kim, V. Pryamitsyn, and V. Ganesan, "Phase Behavior of Binary Blends of Block Copolymers Having Hydrogen Bonding," Macromolecules, 44, 4970-4976, 2011.
    [23] I. W. Hamley, "Introduction to soft matter: synthetic and biological self-assembling materials," John Wiley & Sons, 2013.
    [24] E. Ergoz, J. Fatou, and L. Mandelkern, "Molecular weight dependence of the crystallization kinetics of linear polyethylene. I. Experimental results," Macromolecules, 5, 147-157, 1972.
    [25] A. T. Lorenzo, M. L. Arnal, J. Albuerne, and A. J. Müller, "DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems," Polymer testing, 26, 222-231, 2007.
    [26] M. Avrami, "Kinetics of phase change. I General theory," The Journal of Chemical Physics, 7, 1103-1112, 1939.
    [27] M. Avrami, "Kinetics of phase change. II transformation‐time relations for random distribution of nuclei," The Journal of Chemical Physics, 8, 212-224, 1940.
    [28] M. Avrami, "Granulation, phase change, and microstructure kinetics of phase change. III," The Journal of chemical physics, 9, 177-184, 1941.
    [29] J. Hay, "Application of the modified avrami equations to polymer crystallisation kinetics," British Polymer Journal, 3, 74-82, 1971.
    [30] M. Di Lorenzo and C. Silvestre, "Non-isothermal crystallization of polymers," Progress in Polymer Science, 24, 917-950, 1999.
    [31] A. Jeziorny, "Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC," Polymer, 19, 1142-1144, 1978.
    [32] M. Liu, Q. Zhao, Y. Wang, C. Zhang, Z. Mo, and S. Cao, "Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212," Polymer, 44, 2537-2545, 2003.
    [33] J. F. Graf, M. M. Coleman, and P. C. Painter, "An equation of state theory for hydrogen-bonding polymer mixtures," The Journal of Physical Chemistry, 95, 6710-6723, 1991.
    [34] N. V. Salim, T. Hanley, and Q. Guo, "Microphase separation through competitive hydrogen bonding in double crystalline diblock copolymer/homopolymer blends," Macromolecules, 43, 7695-7704, 2010.
    [35] S. Nakagawa, H. Marubayashi, and S. Nojima, "Crystallization of polymer chains confined in nanodomains," European Polymer Journal, 70, 262-275, 2015.
    [36] R. Castillo, M. Arnal, A. Müller, I. Hamley, V. Castelletto, H. Schmalz, et al., "Fractionated crystallization and fractionated melting of confined PEO microdomains in PB-b-PEO and PE-b-PEO diblock copolymers," Macromolecules, 41, 879-889, 2008.
    [37] L. Zhu, Y. Chen, A. Zhang, B. H. Calhoun, M. Chun, R. P. Quirk, et al., "Phase structures and morphologies determined by competitions among self-organization, crystallization, and vitrification in a disordered poly (ethylene oxide)-b-polystyrene diblock copolymer," Physical Review B, 60, 10022, 1999.
    [38] J.-T. Xu, S. C. Turner, J. P. A. Fairclough, S.-M. Mai, A. J. Ryan, C. Chaibundit, et al., "Morphological Confinement on Crystallization in Blends of Poly (oxyethylene-b lock-oxybutylene) and Poly (oxybutylene)," Macromolecules, 35, 3614-3621, 2002.
    [39] W.-N. He and J.-T. Xu, "Crystallization assisted self-assembly of semicrystalline block copolymers," Progress in Polymer Science, 37, 1350-1400, 2012.
    [40] L. Zhu, B. R. Mimnaugh, Q. Ge, R. P. Quirk, S. Z. Cheng, E. L. Thomas, et al., "Hard and soft confinement effects on polymer crystallization in microphase separated cylinder-forming PEO-b-PS/PS blends," Polymer, 42, 9121-9131, 2001.
    [41] H. Mao and M. A. Hillmyer, "Morphological Behavior of Polystyrene‐block‐Polylactide/Polystyrene‐block‐Poly (ethylene oxide) Blends," Macromolecular Chemistry and Physics, 209, 1647-1656, 2008.
    [42] C.-Y. Chu, H.-L. Chen, M.-S. Hsiao, J.-H. Chen, and B. Nandan, "Crystallization in the Binary Blends of Crystalline− Amorphous Diblock Copolymers Bearing Chemically Different Crystalline Block," Macromolecules, 43, 3376-3382, 2010.
    [43] 陳信龍 and 鄭有舜, "小角度X光散射在高分子奈米結構解析之應用," 科儀新知, 2007.
    [44] Y. S. Lu, C. Y. Yu, Y. C. Lin, and S. W. Kuo, "Hydrogen bonding strength of diblock copolymers affects the self-assembled structures with octa-functionalized phenol POSS nanoparticles," Soft Matter, 12, 2288-2300, 2016.
    [45] T. Hashimoto, K. Yamasaki, S. Koizumi, and H. Hasegawa, "Ordered structure in blends of block copolymers. 1. Miscibility criterion for lamellar block copolymers," Macromolecules, 26, 2895-2904, 1993.
    [46] T. Hashimoto, S. Koizumi, and H. Hasegawa, "Ordered structure in blends of block copolymers. 2. self-assembly for immiscible lamella-forming copolymers," Macromolecules, 27, 1562-1570, 1994.
    [47] K. Kimishima, H. Jinnai, and T. Hashimoto, "Control of Self-Assembled Structures in Binary Mixtures of A− B Diblock Copolymer and A− C Diblock Copolymer by Changing the Interaction between B and C Block Chains," Macromolecules, 32, 2585-2596, 1999.
    [48] D. Yamaguchi and T. Hashimoto, "A phase diagram for the binary blends of nearly symmetric diblock copolymers. 1. Parameter space of molecular weight ratio and blend composition," Macromolecules, 34, 6495-6505, 2001.
    [49] S.-W. Kuo, "Hydrogen-bonding in polymer blends," Journal of Polymer Research, 15, 459-486, 2008.
    [50] A. Müller, V. Balsamo, M. Arnal, T. Jakob, H. Schmalz, and V. Abetz, "Homogeneous nucleation and fractionated crystallization in block copolymers," Macromolecules, 35, 3048-3058, 2002.
    [51] M. L. Di Lorenzo, "Spherulite growth rates in binary polymer blends," Progress in polymer science, 28, 663-689, 2003.
    [52] C. Silvestre, S. Cimmino, and M. Di Lorenzo, "Crystallization of poly (1‐butene)/hydrogenated oligocyclopentadiene blends," Journal of applied polymer science, 71, 1677-1690, 1999.
    [53] N. V. Salim, N. Hameed, T. L. Hanley, and Q. Guo, "Microphase separation induced by competitive hydrogen bonding interactions in semicrystalline triblock copolymer/homopolymer complexes," Soft Matter, 9, 6176-6184, 2013.
    [54] R. M. Michell and A. J. Müller, "Confined crystallization of polymeric materials," Progress in Polymer Science, 54, 183-213, 2016.
    [55] S. Koizumi, H. Hasegawa, and T. Hashimoto, "Ordered structure in blends of block copolymers. 3. Self-assembly in blends of sphere-or cylinder-forming copolymers," Macromolecules, 27, 4371-4381, 1994.
    [56] F. Chen, Y. Kondo, and T. Hashimoto, "Control of nanostructure in mixtures of block copolymers: Curvature control via cosurfactant effects," Macromolecules, 40, 3714-3723, 2007.
    [57] M. Shibayama, T. Hashimoto, and H. Kawai, "Ordered structure in block polymer solutions. 1. Selective solvents," Macromolecules, 16, 16-28, 1983.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE