| 研究生: |
陳偉銘 Chen, Wei-Ming |
|---|---|
| 論文名稱: |
IRES Omnibus:建構預測人類基因中帶有IRES調控元件之整合型系統 IRES Omnibus:An integrated web server for predicting and searching the human genes bearing the IRES elements |
| 指導教授: |
曾大千
Tseng, T. Joseph |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物資訊研究所 Institute of Bioinformatics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | IRES 、cap-independent 、IRES-dependent |
| 外文關鍵詞: | IRES-dependent, cap-independent, IRES |
| 相關次數: | 點閱:147 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Internal Ribosome Entry Site (IRES)是位於啟始密碼子上游的調控元件(cis-acting element),能直接吸引核醣體複合物來合成蛋白質。經由IRES調控之轉譯機制最先在poliovirus病毒中發現,隨後在細胞內表現的基因也陸續發現具有IRES調控的轉譯機制,例如:Bip、FGF2、 c-myc、p53和HIF-1。截自目前為止,大約有90筆基因帶有IRES,其中大約一半基因屬於致癌基因和生長因子及參與在細胞凋亡(apoptosis)的調控。這也說明了IRES調控之轉譯機制對於維持細胞體內之平衡扮演著重要角色,特別是當cap-dependent轉譯機制被抑制時。因此也讓我們想了解有多少基因帶有IRES的調控元件,並且更進一步想探討IRES在生理功能上的角色。
在本論文中,我們利用結構型態比對的軟體來分析人類中可能帶有IRES的基因,將所預測資料存入資料庫且建構了能預測IRES存在與否之整合型的網站,並且將其命名為IRES omnibus (I.O)。由所得的資料中發現,在5’UTR某些區域中會存在有連續不中斷且相互重疊的IRES二級結構,並將這樣特殊區域命名為internal ribosome entry zone (IREZone)。目前我們將系統中的資料劃分為IRES與IREZone兩大組群,其分別約人類基因總數的24.8%與45.6%。利用過去文獻與microarray 資料來驗證所得到之結果,約達80%以上的預測準確性。透過報導基因實驗顯示了IREZone活性高於單一的IRES。此外也證實了AU-rich的IRES的序列同樣具有IRES的轉譯活性,此結果也有別於過去認為IRES大約是GC-rich序列的認知。另一方面於IREZone基因組群中,也分析出兩組調控元件存在於IREZone區域內,分別為(CGG)8重複序列與(CCG)8重複序列。為了進一步找出這些帶有調控元件的IREZone在功能上的角色,透過Ingenuity software將其作系統性分類,其結果也顯示帶有(CCG)8與(CGG)8 的IREzone基因組別參與在神經相關疾病與癌症,相較於對照組(IREZone基因組群)大都參與在細胞死亡的生理作用,帶有相同調控元件的組別,其調控的功能可能更加一致。
綜合上述結果,我們建立了能準確預測IRES的系統,並且也發現了一些有別於過去的概念,例如:IREZone的概念、AU-rich的IRES具有IRES的轉譯活性、帶有相同調控元件的IRES之基因其調控的功能可能更加一致。這樣的分析結果也提供了我們在未來一個新的方向來探索IRES在生理功能上的角色。
Internal Ribosome Entry Site (IRES) is a cis-acting element located at the upstream of the translation codon to recruit the ribosome complex to undergo protein translation. Translation by internal ribosome entry was first identified in poliovirus, but a number of cellular mRNAs containing IRESs have subsequently been found, including basic fibroblast growth factor, c-myc, p53, and HIF-1. Till now, around 90 cellular IRES elements have been identified, almost half found in genes encoding oncogenes, growth factors, and proteins involved in the regulation of apoptosis. This suggests that IRES-dependent translation is an important regulatory mechanism for the maintenance of cellular homeostasis, especially when cap-dependent initiation is inhibited. Therefore, it would be interested to understand how many genes bearing the IRES to elucidate the functional role of IRES.
In this study, we use the pattern search algorithm to screen the whole human transcripts to identify the genes bearing the IRES elements. And then the web server of IRES omnibus was established. From the result, a special phenomenon which multiple IRES structures existed in specific region was found, and this region was named as internal ribosome entry zone (IREZone). The total human transcripts were identified to contain the IRES or IREZone element about 24.8% and 45.6%, respectively. The accuracy of our result was proved by the prediction of the reported genes which bearing IRES. Using bicistronic reporter assay, we demonstrated that IREzone exhibited higher IRES activity then single IRES. Furthermore, the Y-shape structure with AU-rich sequence was demonstrated to have IRES activity. This result is different from the normal concept that IRES have highly GC content. On the other hand, we also identified two kinds of sequence motif in genes bearing IREZone, (CGG)8 and (CCG)8. To further characterize the functional role of these motifs. The genes bearing IREZone with these motifs were clustered by Ingenuity software. The majority of genes bearing IREZone were found to involve in the function of cell death. however, the gene bearing (CGG)8 and (CCG)8 motif involved in neurological disease and cancer.
Overall, we constructed an integrated web server to predicting the IRES element, and proposed some new concept about the IRES. These results provide us a new way to explore the functional role of IRES in biological process.
1.Landau EM: Teaching resources. Regulation of protein translation. Sci STKE 2006, 2006(325):tr3.
2.Jang SK, Krausslich HG, Nicklin MJ, Duke GM, Palmenberg AC, Wimmer E: A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 1988, 62(8):2636-2643.
3.Pelletier J, Sonenberg N: Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 1988, 334(6180):320-325.
4.Komar AA, Hatzoglou M: Internal ribosome entry sites in cellular mRNAs: mystery of their existence. J Biol Chem 2005, 280(25):23425-23428.
5.Baird SD, Turcotte M, Korneluk RG, Holcik M: Searching for IRES. RNA 2006, 12(10):1755-1785.
6.Vagner S, Galy B, Pyronnet S: Irresistible IRES. Attracting the translation machinery to internal ribosome entry sites. EMBO Rep 2001, 2(10):893-898.
7.Kieft JS: Viral IRES RNA structures and ribosome interactions. Trends Biochem Sci 2008, 33(6):274-283.
8.Lewis SM, Holcik M: For IRES trans-acting factors, it is all about location. Oncogene 2008, 27(8):1033-1035.
9.Graber TE, Holcik M: Cap-independent regulation of gene expression in apoptosis. Mol Biosyst 2007, 3(12):825-834.
10.Spriggs KA, Bushell M, Mitchell SA, Willis AE: Internal ribosome entry segment-mediated translation during apoptosis: the role of IRES-trans-acting factors. Cell Death Differ 2005, 12(6):585-591.
11.Jan E: Divergent IRES elements in invertebrates. Virus Res 2006, 119(1):16-28.
12.Rogers GW, Jr., Komar AA, Merrick WC: eIF4A: the godfather of the DEAD box helicases. Prog Nucleic Acid Res Mol Biol 2002, 72:307-331.
13.Scheper GC, Proud CG: Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? Eur J Biochem 2002, 269(22):5350-5359.
14.Pestova TV, Lomakin IB, Lee JH, Choi SK, Dever TE, Hellen CU: The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 2000, 403(6767):332-335.
15.Hinnebusch AG: eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem Sci 2006, 31(10):553-562.
16.Macejak DG, Sarnow P: Internal initiation of translation mediated by the 5' leader of a cellular mRNA. Nature 1991, 353(6339):90-94.
17.Gonzalez-Herrera IG, Prado-Lourenco L, Teshima-Kondo S, Kondo K, Cabon F, Arnal JF, Bayard F, Prats AC: IRES-dependent regulation of FGF-2 mRNA translation in pathophysiological conditions in the mouse. Biochem Soc Trans 2006, 34(Pt 1):17-21.
18.Nanbru C, Lafon I, Audigier S, Gensac MC, Vagner S, Huez G, Prats AC: Alternative translation of the proto-oncogene c-myc by an internal ribosome entry site. J Biol Chem 1997, 272(51):32061-32066.
19.Ray PS, Grover R, Das S: Two internal ribosome entry sites mediate the translation of p53 isoforms. EMBO Rep 2006, 7(4):404-410.
20.Lang KJ, Kappel A, Goodall GJ: Hypoxia-inducible factor-1alpha mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol Biol Cell 2002, 13(5):1792-1801.
21.Le SY, Maizel JV, Jr.: A common RNA structural motif involved in the internal initiation of translation of cellular mRNAs. Nucleic Acids Res 1997, 25(2):362-369.
22.Chappell SA, Edelman GM, Mauro VP: Biochemical and functional analysis of a 9-nt RNA sequence that affects translation efficiency in eukaryotic cells. Proc Natl Acad Sci U S A 2004, 101(26):9590-9594.
23.Owens GC, Chappell SA, Mauro VP, Edelman GM: Identification of two short internal ribosome entry sites selected from libraries of random oligonucleotides. Proc Natl Acad Sci U S A 2001, 98(4):1471-1476.
24.Yeh CH, Hung LY, Hsu C, Le SY, Lee PT, Liao WL, Lin YT, Chang WC, Tseng JT: RNA-binding protein HuR interacts with thrombomodulin 5'untranslated region and represses internal ribosome entry site-mediated translation under IL-1 beta treatment. Mol Biol Cell 2008, 19(9):3812-3822.
25.Sehgal A, Briggs J, Rinehart-Kim J, Basso J, Bos TJ: The chicken c-Jun 5' untranslated region directs translation by internal initiation. Oncogene 2000, 19(24):2836-2845.
26.Coleman J, Miskimins WK: Structure and activity of the internal ribosome entry site within the human p27 Kip1 5'-untranslated region. RNA Biol 2009, 6(1):84-89.
27.Bastide A, Karaa Z, Bornes S, Hieblot C, Lacazette E, Prats H, Touriol C: An upstream open reading frame within an IRES controls expression of a specific VEGF-A isoform. Nucleic Acids Res 2008, 36(7):2434-2445.
28.Yaman I, Fernandez J, Liu H, Caprara M, Komar AA, Koromilas AE, Zhou L, Snider MD, Scheuner D, Kaufman RJ et al: The zipper model of translational control: a small upstream ORF is the switch that controls structural remodeling of an mRNA leader. Cell 2003, 113(4):519-531.
29.Mitchell SA, Brown EC, Coldwell MJ, Jackson RJ, Willis AE: Protein factor requirements of the Apaf-1 internal ribosome entry segment: roles of polypyrimidine tract binding protein and upstream of N-ras. Mol Cell Biol 2001, 21(10):3364-3374.
30.Pickering BM, Mitchell SA, Evans JR, Willis AE: Polypyrimidine tract binding protein and poly r(C) binding protein 1 interact with the BAG-1 IRES and stimulate its activity in vitro and in vivo. Nucleic Acids Res 2003, 31(2):639-646.
31.Evans JR, Mitchell SA, Spriggs KA, Ostrowski J, Bomsztyk K, Ostarek D, Willis AE: Members of the poly (rC) binding protein family stimulate the activity of the c-myc internal ribosome entry segment in vitro and in vivo. Oncogene 2003, 22(39):8012-8020.
32.Cobbold LC, Spriggs KA, Haines SJ, Dobbyn HC, Hayes C, de Moor CH, Lilley KS, Bushell M, Willis AE: Identification of internal ribosome entry segment (IRES)-trans-acting factors for the Myc family of IRESs. Mol Cell Biol 2008, 28(1):40-49.
33.Jopling CL, Willis AE: N-myc translation is initiated via an internal ribosome entry segment that displays enhanced activity in neuronal cells. Oncogene 2001, 20(21):2664-2670.
34.Nevins TA, Harder ZM, Korneluk RG, Holcik M: Distinct regulation of internal ribosome entry site-mediated translation following cellular stress is mediated by apoptotic fragments of eIF4G translation initiation factor family members eIF4GI and p97/DAP5/NAT1. J Biol Chem 2003, 278(6):3572-3579.
35.Stoneley M, Subkhankulova T, Le Quesne JP, Coldwell MJ, Jopling CL, Belsham GJ, Willis AE: Analysis of the c-myc IRES; a potential role for cell-type specific trans-acting factors and the nuclear compartment. Nucleic Acids Res 2000, 28(3):687-694.
36.Chappell SA, Edelman GM, Mauro VP: A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc Natl Acad Sci U S A 2000, 97(4):1536-1541.
37.Pickering BM, Mitchell SA, Spriggs KA, Stoneley M, Willis AE: Bag-1 internal ribosome entry segment activity is promoted by structural changes mediated by poly(rC) binding protein 1 and recruitment of polypyrimidine tract binding protein 1. Mol Cell Biol 2004, 24(12):5595-5605.
38.Kullmann M, Gopfert U, Siewe B, Hengst L: ELAV/Hu proteins inhibit p27 translation via an IRES element in the p27 5'UTR. Genes Dev 2002, 16(23):3087-3099.
39.Grover R, Ray PS, Das S: Polypyrimidine tract binding protein regulates IRES-mediated translation of p53 isoforms. Cell Cycle 2008, 7(14):2189-2198.
40.Coldwell MJ, deSchoolmeester ML, Fraser GA, Pickering BM, Packham G, Willis AE: The p36 isoform of BAG-1 is translated by internal ribosome entry following heat shock. Oncogene 2001, 20(30):4095-4100.
41.Stoneley M, Chappell SA, Jopling CL, Dickens M, MacFarlane M, Willis AE: c-Myc protein synthesis is initiated from the internal ribosome entry segment during apoptosis. Mol Cell Biol 2000, 20(4):1162-1169.
42.Miyata M, Raven JF, Baltzis D, Koromilas AE, Sabe H: IRES-mediated translational control of AMAP1 expression during differentiation of monocyte U937 cells. Cell Cycle 2008, 7(20):3273-3281.
43.Beaudoin ME, Poirel VJ, Krushel LA: Regulating amyloid precursor protein synthesis through an internal ribosomal entry site. Nucleic Acids Res 2008, 36(21):6835-6847.
44.Veo BL, Krushel LA: Translation initiation of the human tau mRNA through an internal ribosomal entry site. J Alzheimers Dis 2009, 16(2):271-275.
45.Bonnal S, Boutonnet C, Prado-Lourenco L, Vagner S: IRESdb: the Internal Ribosome Entry Site database. Nucleic Acids Res 2003, 31(1):427-428.
46.Mokrejs M, Vopalensky V, Kolenaty O, Masek T, Feketova Z, Sekyrova P, Skaloudova B, Kriz V, Pospisek M: IRESite: the database of experimentally verified IRES structures (www.iresite.org). Nucleic Acids Res 2006, 34(Database issue):D125-130.
47.Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR et al: Rfam: updates to the RNA families database. Nucleic Acids Res 2009, 37(Database issue):D136-140.
48.Grillo G, Licciulli F, Liuni S, Sbisa E, Pesole G: PatSearch: A program for the detection of patterns and structural motifs in nucleotide sequences. Nucleic Acids Res 2003, 31(13):3608-3612.
49.Mignone F, Grillo G, Licciulli F, Iacono M, Liuni S, Kersey PJ, Duarte J, Saccone C, Pesole G: UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 2005, 33(Database issue):D141-146.
50.Huang HY, Chien CH, Jen KH, Huang HD: RegRNA: an integrated web server for identifying regulatory RNA motifs and elements. Nucleic Acids Res 2006, 34(Web Server issue):W429-434.
51.Johannes G, Carter MS, Eisen MB, Brown PO, Sarnow P: Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc Natl Acad Sci U S A 1999, 96(23):13118-13123.
52.Dsouza M, Larsen N, Overbeek R: Searching for patterns in genomic data. Trends Genet 1997, 13(12):497-498.
53.Hofacker IL: Vienna RNA secondary structure server. Nucleic Acids Res 2003, 31(13):3429-3431.
54.Hochsmann M, Toller T, Giegerich R, Kurtz S: Local similarity in RNA secondary structures. Proc IEEE Comput Soc Bioinform Conf 2003, 2:159-168.
55.Qin X, Sarnow P: Preferential translation of internal ribosome entry site-containing mRNAs during the mitotic cycle in mammalian cells. J Biol Chem 2004, 279(14):13721-13728.
56.Bushell M, Stoneley M, Kong YW, Hamilton TL, Spriggs KA, Dobbyn HC, Qin X, Sarnow P, Willis AE: Polypyrimidine tract binding protein regulates IRES-mediated gene expression during apoptosis. Mol Cell 2006, 23(3):401-412.
57.Vlasova IA, Bohjanen PR: Posttranscriptional regulation of gene networks by GU-rich elements and CELF proteins. RNA Biol 2008, 5(4):201-207.
58.Wells RD: Mutation spectra in fragile X syndrome induced by deletions of CGG*CCG repeats. J Biol Chem 2009, 284(12):7407-7411.
59.Fu YH, Kuhl DP, Pizzuti A, Pieretti M, Sutcliffe JS, Richards S, Verkerk AJ, Holden JJ, Fenwick RG, Jr., Warren ST et al: Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 1991, 67(6):1047-1058.
60.Dobson T, Kube E, Timmerman S, Krushel LA: Identifying intrinsic and extrinsic determinants that regulate internal initiation of translation mediated by the FMR1 5' leader. BMC Mol Biol 2008, 9:89.
61.Jackson RJ, Kaminski A: Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA 1995, 1(10):985-1000.
62.Hellen CU, Sarnow P: Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 2001, 15(13):1593-1612.
63.Stoneley M, Willis AE: Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 2004, 23(18):3200-3207.
64.Mitchell SA, Spriggs KA, Bushell M, Evans JR, Stoneley M, Le Quesne JP, Spriggs RV, Willis AE: Identification of a motif that mediates polypyrimidine tract-binding protein-dependent internal ribosome entry. Genes Dev 2005, 19(13):1556-1571.
65.Coldwell MJ, Mitchell SA, Stoneley M, MacFarlane M, Willis AE: Initiation of Apaf-1 translation by internal ribosome entry. Oncogene 2000, 19(7):899-905.
66.Rivas E, Eddy SR: Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs. Bioinformatics 2000, 16(7):583-605.
67.Hernandez G, Vazquez-Pianzola P, Sierra JM, Rivera-Pomar R: Internal ribosome entry site drives cap-independent translation of reaper and heat shock protein 70 mRNAs in Drosophila embryos. RNA 2004, 10(11):1783-1797.
68.Hernandez G: Was the initiation of translation in early eukaryotes IRES-driven? Trends Biochem Sci 2008, 33(2):58-64.
69.Vazquez-Pianzola P, Hernandez G, Suter B, Rivera-Pomar R: Different modes of translation for hid, grim and sickle mRNAs in Drosophila. Cell Death Differ 2007, 14(2):286-295.
70.Dorokhov YL, Skulachev MV, Ivanov PA, Zvereva SD, Tjulkina LG, Merits A, Gleba YY, Hohn T, Atabekov JG: Polypurine (A)-rich sequences promote cross-kingdom conservation of internal ribosome entry. Proc Natl Acad Sci U S A 2002, 99(8):5301-5306.
71.Xia X, Holcik M: Strong eukaryotic IRESs have weak secondary structure. PLoS ONE 2009, 4(1):e4136.
72.Baird SD, Lewis SM, Turcotte M, Holcik M: A search for structurally similar cellular internal ribosome entry sites. Nucleic Acids Res 2007, 35(14):4664-4677.
73.Pesole G, Mignone F, Gissi C, Grillo G, Licciulli F, Liuni S: Structural and functional features of eukaryotic mRNA untranslated regions. Gene 2001, 276(1-2):73-81.
74.Pesole G, Grillo G, Larizza A, Liuni S: The untranslated regions of eukaryotic mRNAs: structure, function, evolution and bioinformatic tools for their analysis. Brief Bioinform 2000, 1(3):236-249.
75.Lu JY, Schneider RJ: Tissue distribution of AU-rich mRNA-binding proteins involved in regulation of mRNA decay. J Biol Chem 2004, 279(13):12974-12979.
76.Naumann F, Remus R, Schmitz B, Doerfler W: Gene structure and expression of the 5'-(CGG)(n)-3'-binding protein (CGGBP1). Genomics 2004, 83(1):106-118.