| 研究生: |
楊欣玲 Yang, Hsin-Ling |
|---|---|
| 論文名稱: |
獨立式混合再生能源之模擬與分析 Simulation and Analysis for Standalone Hybrid Renewable Energy System |
| 指導教授: |
林清一
Li, Chin-E |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 風力/太陽能/電池混和系統 、永磁同步發電機 、Ćuk-SEPIC轉換器 、最大功率追蹤 、模糊控制 、監控能源系統控制 |
| 外文關鍵詞: | Wind/solar/battery system, PMSG, Ćuk-SEPIC converter, Fuzzy logic MPPT technique, Supervisory control |
| 相關次數: | 點閱:58 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
許多研究指出混合式再生能源比起單一能源來的更加有效率且可靠,獨立式混合再生能源系統可以應用在一些電網難以達到的地方,例如:山區或是破碎的小島。本篇論文模擬分析風力、太陽能以及電池混合再生能源系統,此系統加入最大功率追蹤及監控控制,以提升系統的效率及穩定性。風力機將採用永磁同步發電機,並利用Ćuk-SEPIC轉換器連接太陽能系統與風力系統。最大功率追蹤的方法採用模糊控制,並透過轉換器來達到最佳電壓。另外,為了提高電池壽命及增加系統的穩定性,將監測系統的電力供給量、負載量與電池的剩餘電量,以完成能源管理。整個系統模型的搭建以及模擬分析會在MATLAB/Simulink環境中進行。從結果的表現可以看出來,當風速或日照量改變時,模糊控制會使系統保持最大功率追蹤,且達到穩態。此外,當改變系統的電力供需量,能源管理會讓系統在最佳的模式運作。
Researchers of the renewable energy have often suggested that the hybrid renewable energy system (HRES) would be more reliable than only one power source. Standalone HRES is suitable for the region which is away from the main power grid. This thesis presents the configuration and control of the proposed HRES including solar energy, wind energy and battery storage. The solar system and the wind system with a permanent magnet synchronous generator (PMSG) are combined together using an integrated Ćuk-SEPIC converter. The proposed HRES applies maximum power point tracking (MPPT) technique to extract maximum energy. The voltages of the wind system and solar system are regulated by Ćuk-SEPIC converter with fuzzy logic MPPT method. In order to protect the battery and optimize system operation, the rule-based supervisory control in HRES is also applied. The proposed hybrid system with control is modeled and simulated using MATLAB/Simulink program. The simulation results show that the objective of MPPT control at varied wind speed and irradiance has reached. The performances of supervisory control are satisfactory under dynamic working conditions.
[1]Courtecuisse, V., Sprooten, J., Robyns, B., Petit, M., Francois, B., Deuse, J., “A methodology to design a fuzzy logic based supervision of Hybrid Renewable Energy Systems,” Mathematics and computers in simulation, Volume 81, 2010, pp. 208-224.
[2]Chaib, A., Achour, D., Kesraoui, M., “Control of a solar PV/wind hybrid energy system,” Energy Procedia, Volume 95, 2016, pp. 89-97.
[3]Muralikrishna, M., Lakshminarayana, V., “Hybrid (solar and wind) energy systems for rural electrification,”. ARPN Journal of Engineering and Applied Sciences, Volume 3, 2008, pp. 50-58.
[4]Kar, D. P., “The Lowest Cost Electricity for a Poor Rural Village in India: Rural Grid or Off-grid SPV,” Doctoral dissertation, Colorado School of Mines, 2010.
[5]Hong, C. M., Chen, C. H., Tu, C. S., “Maximum power point tracking-based control algorithm for PMSG wind generation system without mechanical sensors” Energy conversion and management, Volume 69, 2013, pp. 58-67.
[6]Urtasun, A., Sanchis, P., San Martin, I., López, J., Marroyo, L., “Modeling of small wind turbines based on PMSG with diode bridge for sensorless maximum power tracking,” Renewable Energy, Volume 55, 2013, pp. 138-149.
[7]Chen, Y. M., Cheng, C. S., Wu, H. C., “Grid-connected hybrid PV/wind power generation system with improved DC bus voltage regulation strategy,”. IEEE Applied Power Electronics Conference and Exposition, 2006, pp. 1088-1094.
[8]Kumar, K., Babu, N. R., Prabhu, K. R., “Design and analysis of an integrated Ćuk-SEPIC converter with MPPT for standalone wind/PV hybrid system,” International Journal of Renewable Energy Research, Volume 7, 2017, pp. 96-106
[9]Kumar, D., Chatterjee, K., “A review of conventional and advanced MPPT algorithms for wind energy systems,” Renewable and Sustainable Energy Reviews, Volume 55, 2016, pp. 957-970.
[10]Fathabadi, H., “Novel fast dynamic MPPT (maximum power point tracking) technique with the capability of very high accurate power tracking,” Energy, Volume 94, 2016, pp. 466-475.
[11]Meghni, B., Saadoun, A., Dib, D., Amirat, Y., “Effective MPPT technique and robust power control of the PMSG wind turbine,” IEEJ Transactions on Electrical and Electronic Engineering, Volume 10, 2015, pp. 619-627.
[12]Daili, Y., Gaubert, J. P., Rahmani, L., “Implementation of a new maximum power point tracking control strategy for small wind energy conversion systems without mechanical sensors,” Energy Conversion and Management, Volume 97, 2015, pp. 298-306.
[13]Heydari, M., Smedley, K., “Comparison of maximum power point tracking methods for medium to high power wind energy systems,” 20th Electrical Power Distribution Conference, 2015, pp.184-189.
[14]Li, X. P., Fu, W. L., Shi, Q. J., Xu, J. B., Jiang, Q. Y., “A fuzzy logical MPPT control strategy for PMSG wind generation systems,” Journal of Electronic Science and Technology, Volume 11, 2013, pp. 72-77.
[15]Luo, X., Wang, J., Dooner, M., Clarke, J., “Overview of current development in electrical energy storage technologies and the application potential in power system operation,” Applied Energy, Volume 137, 2015, pp. 511-536.
[16]Madaci, B., Chenni, R., Kurt, E., Hemsas, K. E., “Design and control of a stand-alone hybrid power system,” International Journal of Hydrogen Energy, Volume 41, 2016, pp. 12485-12496.
[17]Fathabadi, H., “Novel high efficient speed sensorless controller for maximum power extraction from wind energy conversion systems,” Energy Conversion and Management, Volume 123, 2016, pp. 392-401.
[18]Jansuya, P., Kumsuwan, Y., “Design of MATLAB/Simulink Modeling of Fixed-pitch Angle Wind Turbine Simulator,” Energy Procedia, Volume 34, 2013, pp. 362-370.
[19]Tan, K., Islam, S., “Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors,” IEEE transactions on energy conversion, Volume19, 2004, pp. 392-399.
[20]Afghan, S. A., Almusawi, H., Geza, H., “Simulating the electrical characteristics of a photovoltaic cell based on a single-diode equivalent circuit model,” MATEC Web of Conferences, Volume 126, 2017.
[21]Rahim, N. A., Ping, H. W., Selvaraj, J., “Photovoltaic module modeling using Simulink/Matlab,” Procedia Environmental Sciences, Volume 17, pp.537-546.
[22]Kumar, M. A., “Design and implementation of dual input Ćuk-SEPIC converter for energy storage,” International Journal of Research in Engineering and Applied Sciences, Volume 6, 2016. pp.70-78.
[23]Divya, K. C., Østergaard, J., “Battery energy storage technology for power systems—An overview,” Electric Power Systems Research, Volume 79, 2009, pp. 511-520.
[24]Salameh, Z. M., Casacca, M. A., Lynch, W. A., “A mathematical model for lead-acid batteries,” IEEE Transactions on Energy Conversion, Volume 7, 1992, pp. 93-98.
[25]Haddad, R., El Shahat, A., Kalaani, Y., “Lead Acid Battery Modeling for PV Applications,” Journal of Electrical Engineering, Volume 15, 2015.
[26]Ram, J. P., Rajasekar, N., Miyatake, M., “Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review,” Renewable and Sustainable Energy Reviews, Volume 73, 2017, pp. 1138-1159.
[27]Fathabadi, H., “Novel standalone hybrid solar/wind/fuel cell power generation system for remote areas,” Solar Energy, Volume 146, 2017, pp. 30-43.
[28]Kesraoui, M., Korichi, N., Belkadi, A., “Maximum power point tracker of wind energy conversion system,” Renewable Energy, Volume 36, 2011, pp. 2655-2662.
[29]García, P., Torreglosa, J. P., Fernandez, L. M., Jurado, F., “Optimal energy management system for stand-alone wind turbine/photovoltaic/hydrogen/battery hybrid system with supervisory control based on fuzzy logic,” International Journal of Hydrogen Energy, Volume 38, 2013, pp. 14146-14158.
[30]Daud, M. Z., Mohamed, A., Wanik, M. C., Hannan, M. A., “Performance evaluation of grid-connected photovoltaic system with battery energy storage,” IEEE International Conference on Power and Energy, 2012, pp. 337-342.
校內:2023-07-15公開