| 研究生: |
周禮緯 Chou, Li-wei |
|---|---|
| 論文名稱: |
鋼筋混凝土房屋構架在高溫中、後之行為研究 ─ 自充填混凝土梁之行為 Behavior of Reinforced Concrete Building Frames Subjected to Elevated Temperature ─ Behavior of Self-Compacting Concrete Beam |
| 指導教授: |
方一匡
Fang, I-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 181 |
| 中文關鍵詞: | 火 、溫度 、混凝土 、梁 |
| 外文關鍵詞: | Temperature, Fire, Beam, Concrete |
| 相關次數: | 點閱:67 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著自充填混凝土材料在房屋結構的使用上愈來愈頻繁,其耐火性能也日漸重要,本篇論文旨在探討使用自充填混凝土(SCC)材料之梁柱房屋構件中之梁在高溫中、後之承力行為。本研究採用自充填混凝土材料製作實尺寸之梁柱複合構件試體,試驗分為高溫中、冷卻過程及高溫後三個階段,並使用ANSYS軟體來模擬試體內部溫度變化及變形。
本研究之主要成果如下:
1.在高溫試驗中,試體有明顯之爆裂及出水等現象,試體內部溫度升高到100℃左右會出現升溫遲滯現象,為混凝土內部游離水吸收熱量後發生相變化所造成。
2.在加溫結束時,溫度所造成梁之最大撓度為常溫之10.2~11.4倍,梁末端之轉動角及水平位移分別為常溫之13倍及27.1倍。
3.在冷卻過程中,梁的撓度、梁末端轉動角及水平位移於開始冷卻後約40~80分鐘左右達到最大值,分別約為常溫的13倍、15倍及38倍。
4.在殘餘強度測試中,在柱加載為2021 kN,於服務載重下梁之最大撓度約為測試前之1.47~2.20倍,當柱加載提高到了3924 kN,梁總載重為471 kN時發生撓曲破壞。當柱軸力加大至4709 kN時,會造成梁的部分剪力增加,導致撓曲鋼筋降伏後發生剪力破壞。
Self-compacting concrete (SCC) structural systems have been applied frequently in building. The main purpose of this thesis is to study the pre- and post-heating behavior of the beam of SCC beam-column building frames subjected to elevated temperature. Three full scale specimens were built to simulate the beam, column and joint sub-assemblage. The ANSYS software was used to model the variation of inner temperature and the deformations of the specimen.
The main results of this research are as follows:
1.During the heating period, explosion of concrete and moisture exudation in the specimen were observed. The rate of increase in temperature of beam reduced as the concrete temperature reached 100℃ due to the phase change of water inside the concrete.
2.After heating period, the deflection of beam was around 10.2 to 11.4 times greater than that under room temperature. Besides, the beam end rotation and displacement were 13 and 27.1 times greater than those under room temperature.
3.During the cooling period, the deflection, beam end rotation and horizontal displacement of beam reached their maximum values at about 40 to 80 minutes after the start of cooling. They were approximately 13, 15 and 38 times greater than those under room temperature.
4.One specimen failed in flexure as the total beam load reached 471 kN with the column load of 3924 kN. The other one failed in shear after the yielding of steel occurred at load point and joint when the column load raised to 4709 kN.
1.Kodur, V. K. R., and Sultan, M. A., “ Effect of Temperature on Thermal Properties of High-Strength Concrete, ”Journal of Materials in Civil Engineering, ASCE, Vol.15, No.2, April 2003, pp.101-107
2.European Committee, “ Eurocode2 : Design of concrete structures - Part 1-2 : General rules - Structural fire design, ”ENV 1992-1-2:1995
3.Ellingwood, B., and Shaver, J. R., “ Effects of Fire Reinforced Concrete Members, ”Journal of the Structural Division, ASCE, Vol.106, No.ST11, November 1980, pp.2151-2166
4.ACI Committee 216, “ Guide for Determining the Fire Endurance of Concrete Elements, ”American Concrete Institute, 1994
5.Lie, T. T., and Barbaros, C., “ Method to Calculate the Fire Resistance of Circular Reinforced Concrete Columns, ”ACI Materials Journal, Vol. 88, No.1, January-February 1991, pp.84-91
6.Husem, M., “ The effects of high temperature on compressive and flexural strengths of ordinary and high-performance comcrete, ”Fire Safety Journal, Vol.41, 2006, pp.155-163
7.Noumowe, A.; Carre, H.; Daoud, A.; and Toutanji, H., “ High-Strength Self-Compacting Concrete Exposed to Fire Test, ”Journal of Materials in Civil Engineering, ASCE, Vol.18, No.6, December 2006, pp.754-758
8.Chan, Y.N.; Peng, G.F.; and Anson, M., “ Residual Strength and Pore Structure of High-Strength Concrete and Normal Strength Concrete after Exposure to High Temperatures, ”Cement and Concrete Composites, Vol.21, 1999, pp.23-27
9.Anderberg, Y., “ Spalling Phenomena of HPC and OC, ”NIST Workshop on Fire Performance of High Strength Concrete, February 13-14, 1997 in Gaithersburg
10.Short, N.R.; Purkiss J.A.; and Guise S.E., “ Assessment of fire damaged concrete using colour image Analysis Assessment of fire damaged concrete using colour image analysis, ” Construction and Building Materials, Vol. 15, 2001, pp.9-15
11.Xiao, J.Z.; Li, J.; and Huang, Z.F., “ Fire Response of High-Performance Concrete Frames and Their Post-Fire Seismic performance, ”ACI Structural Journal, September-October 2008, pp.531-540
12.Ellingwood, B., and Lin, T.D., “ Flexure and Shear Behavior of Concrete Beams During Fires, ”Journal of Structural Engineering, ASCE, Vol.117, No. 2, Feburary 1991, pp.440-458
13.Kodur, V.K.R.; and Dwaikat, M., “ A numerical model for predicting the fire resistance of reinforced concrete beams, ”Cement and Concrete Composites, Vol.30, No.5, May 2008, pp.431-443
14.Kosmas, K.S., “ Mechanical Characteristics of Self-Consolidating Concretes Exposed to Elevated Temperatures, ”Journal of Materials in Civil Engineering, ASCE, Vol.19, No.8, August 2007, pp.648-654
15.張朝輝,ANSYS熱分析教程與實例解析,中國鐵道出版社,北京 (2007)
16.博嘉科技,有限元分析軟件-ANSYS融會與貫通,中國水利水電出版社,北京 (2002)
17.CEB-FIP,“ Design of Concrete Structure for Fire Resistance, ”Bulletin D’Information, N。 145, 1982
18.中華民國國家標準局CNS12514,建築物構造部份耐火試驗法,台灣(2005)
19.林英俊 、陳舜田、林慶榮 , 「火害後鋼筋混凝土梁之剪力強度」 ,行政院國家科學委員會專題研究計畫成果報告,國立台灣工業技術學院營建工程技術系,台北 (1990)
20.葉宗益 , 「鋼筋混凝土梁柱複合構件承受高溫之行為研究 ─ 普通混凝土梁之承力行為」 ,碩士論文,國立成功大學土木工程研究所,台南 (2007)
21.方怡中 , 「鋼筋混凝土梁柱複合構件承受高溫之行為研究 ─ 自充填混凝土梁之承力行為」 ,碩士論文,國立成功大學土木工程研究所,台南 (2007)
22.陳坤樟 , 「鋼筋混凝土梁柱複合構件於高溫中、後之行為研究 ─ 普通混凝土梁之承力行為」 ,碩士論文,國立成功大學土木工程研究所,台南 (2008)
23.王奕程 , 「鋼筋混凝土梁柱複合構件於高溫中、後之行為研究 ─ 自充填混凝土梁之承力行為」 ,碩士論文,國立成功大學土木工程研究所,台南 (2008)