簡易檢索 / 詳目顯示

研究生: 王國庭
Wang, Kuo-Ting
論文名稱: 量子點的粒子放射特性
Particle Emission Characteristics of a Quantum Dot
指導教授: 邱輝煌
Chiu, Huei-Huang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 58
中文關鍵詞: 量子流體力學量子點
外文關鍵詞: quantum diffusive fluid dynamics, quantum dot
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於上世紀萌芽成長之近代科技的快速發展,量子系統裡有愈來愈多的資源已經能夠被開發使用。奈米科技之發展與應用使人類有能力去製造並且控制其中的微小量子結構元件,例如量子點。本論文引用量子流體力學的物理原則來描述粒子放射流的能量結構,放射流的特性,及其有效作用範圍。因不均勻機率密度所造成的量子勢能在奈米系統裡的能量交換、傳送上扮演相當重要的角色,而量子勢能乃是由量子擴散動能和量子脹縮能所組成。量子放射流裡的量子能乃與機率流體動能,外加勢能,和量子勢能有關,而量子勢能是由量子勢能係數所表示。離散能量的經驗公式可由放射面的中心勢能,動能,和量子勢能之計算所獲得,而特徵能量的禁止能量帶的討論及其在量子資訊科技裡的應用也有所建議。

    In the last century, great progress in technology made it possible to use more resource of nature in nano scale systems. Abilities to manufacture and control micro size devices quantum heterostructures such as quantum dots have been developed for various nanotechnological applications. This paper applies the principle of quantum fluid dynamics to describe energetic structures, emission flow characteristics and the effective working region in particle emission flow field to provide basic information required for the design of quantum dots. The quantum potential consists of diffusion kinetic energy and dilatation energy of quantum flow due to non-uniform distribution of probability density plays a crucial role the energy exchange and transmission in nanosystems. Quantum energy of particle emission flow is related to kinetic energy, external potential and quantum potential characterized by quantum potential coefficient in nanosystems. The empirical law of quantized energy is obtained in terms of central potential, kinetic energy, and quantum potential evaluated at the emission surface, and the forbidden band of the eigenvalue energy is discussed and applications of this special quantum phenomenon in quantum communication technology are suggested.

    ABSTRACT………………………………………………………………i ACKNOWLEDGMENT………………………………………….……..iii CONTENTS……………………………………………………………..iv NOMENCLATURE……………………………………………………..vi LIST OF TABLES…………………………………………………….....ix LIST OF FIGURES…………………………………………….…….…..x CHAPTER I INTRODUCTION………………………………………………………1 1.1 Physical Backgroud……………………………………………………..1 1.2 Objectives……………………………………………………………….2 1.3 Outline of the Thesis……………………………………………………3 II DERIVATION OF PARTICLE EMISSION LAW………………………………….4 2.1 Basic equations of quantum fluid dynamics…………………….………4 2.1.1 Cintinuity equations of quantum fluids……………………….4 2.1.2 Quantum Bernoulli’s equations …….………………………...8 2.2 Particle Emission Law of a Quantum Dot in Spherical Coordinates….12 III MATHEMATICAL FORMULATION……………………………….14 3.1 Description of Physical Problem………………………………………14 3.2 Assumptions…………………………………………………………..16 3.3 Governing Equations………………………………………………….16 3.4 Boundary Conditions………………………………………………….18 3.5 Numerical Approaches………………………………………………...22 IV. RESULTS AND DISCUSSION…………………………………….25 4.1 Particle Emission Characteristics of a Quantum Dot Without External Potential………………………………………………………………….25 4.2 Particle Emission Characteristics of a Quantum Dot With External Potential…………………………………………………………26 4.3 Forbidden Band of a Quantum Dot and Quantum Tunneling Effect……..29 4.4 The Empirical Law of Quantized Energy…………………………………29 V. CONCLUSION………………………………………………………32 APPENDIX A Analytical solution of quantum source flow without external potential……………..…………………………..35 REFERENCES………………………………………………………….36 TABLES………………………………………………………………...37 FIGURES……………………………………………………………….40 VITA…………………………………………………………………….58

    1. H. H. Chiu, Quantum fluid mechanical structure of a hydrogen-like atom, submitted for publication 2002.
    2. Yoshiaki Nakata and Yoshihiro Sugiyama,”Molecular Beam Epitaxial Growth of Self-Assembled InAs/GaAs Quantum Dots”, Semiconductors and Semimetals, Vol. 60.
    3. L. Banyai and S. W. Koch, Semiconductor Quantum Dots, World Scientific, 1993.
    4. M. Gell-Mann. “Questions for the Future”, in the Nature of Matter, Wolfson College Lecture 1980. Ed. By J. H. Mulvey, Claredon Press. Oxford 1981.
    5. H. H. Chiu, Quantum Fluid Dynamics and Quantum Computational Fluid Dynamics “Agenda of the 21st Century Nanotechnology”, The 9th National Computational Fluid Dynamics Conference, 2002.
    6. Erwin ,Ann. Physik 79, 489, 1926.
    7. Max Born, W. Heisenberg, and P. Jordan, Z. Physik, 35, 557, 1926
    8. Max Born, Zeits. physic 37, 863, 1926, and 38, 803,1926.
    9. Peter Landshoff, Allen Metherell, Gareth Rees, Essential Quantum Physics, Cambridge University Express, p14, 1997.
    10. H Jeffreys and B S Jeffreys, Methods of Mathematical Physics, Cambridge University Press.
    11. I. Bialynicki-Birula. Bialynieka-Birula Z. and Sliwa, C. phys. Rev. A 61 0321101-7 2000
    12. L. D. Landau and E. M. Lifshitz, Quantum mechanics Non-Relativistic Theory, 1985.
    13. H.H. Chiu “Fluid mechanics of Quantom systems”, submitted for publication 2002.
    14. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, A. Imamoglu, A Quantum Dot Single-Photon Turnstile Device, vol 290 Science, 2000.
    15. Holleitner et al., Quantum Dot Molecules, vol 297 Science, 2002.
    16. Curtis F. Gerald, Patrick O. Wheatley, Applied Numerical Analysis, 1989.

    下載圖示 校內:立即公開
    校外:2003-06-27公開
    QR CODE