| 研究生: |
蔡宜均 Tsai, Yi-Jun |
|---|---|
| 論文名稱: |
拓樸波導與阿基米德晶格聲子晶體共振腔耦合之聲學波長多工器 Acoustic wavelength division demultiplexer based on the topological waveguide coupling to the cavities of Archimedean tiling phononic crystal |
| 指導教授: |
陳聯文
Chen, Lien-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 聲子晶體共振腔 、拓樸波導 、波長多工器 |
| 外文關鍵詞: | Phononic crystals, Topological waveguide, Wavelength division demultiplexer |
| 相關次數: | 點閱:169 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聲子晶體是由兩種或兩種以上的彈性材料週期性排列而成的結構,聲子晶體能隙之現象,可以阻絕特定頻率的聲波於結構中傳遞,而當破壞聲子晶體完美的週期性結構時,在能隙中會產生缺陷模態,利用缺陷模態可加以設計成共振腔或缺陷波導,因此許多聲學元件以聲子晶體設計成濾波器、分波器等聲學元件。
拓樸絕緣體以量子霍爾效應、量子自旋霍爾效應與量子能谷霍爾效應為基礎,其邊緣模態因受到拓樸保護之影響,對於亂序與缺陷免疫,且可避免後向散射之干擾,具有強大的波傳行為,在電磁波、聲波與彈性波領域都有許多學者研究。
拓樸波導具有強大的傳播能力,與一般線缺陷波導相比其傳播損耗較低,本文利用拓樸波導結合聲子晶體共振腔設計聲學之波長多工器,因阿基米德晶格為具有高度圓對稱性之結構,共振態易形成迴音廊模態,因此以Archimedean(3,4,6,4)晶格聲子晶體為模型。基於量子能谷霍爾效應之理論,破壞晶格對稱性得到拓樸不等價之結構,建立拓樸波導,於拓樸波導頻率範圍內選定一頻率,再設計聲子晶體共振腔,透過改變共振腔散射柱大小獲得不同共振頻率的共振腔,並分析所形成環形共振之迴音廊模態的高品質因子。接著將拓樸波導耦合至共振腔觀察其效能,並設計通道,將聲波從共振腔導出,達到通道濾波器之功用。最後建構四通道的波長多工器,成功地藉由波長多工器將特定頻率的聲波透過通道導出,其穿透率介於47 ~ 68%之間,約為利用線缺陷波導結合共振腔之波長多工器的2倍高,全文使用有限元素軟體COMSOL Multiphysics®進行模擬。
The topological waveguide has the characteristic of robust wave propagation, and low-loss of energy compared with the line defect waveguide. In this work, a 4-channel acoustic wavelength division demultiplexer based on the topological waveguide coupling to phononic crystal ring cavities is proposed. The Archimedean(3,4,6,4) tiling phononic crystals are studied because of its high degree of circular symmetry. According to quantum valley Hall effect, we destroy the spatial inversion symmetry and investigate its topologically inequivalent structure, so the topological waveguide can be constructed. In order to study the coupling between the topological waveguide and the ring cavity, we design cavities with specific resonant frequencies in the phononic crystal by modulating the size of the scatter in cavity. Also, we observe that the whispering-gallery-mode with high quality factor appears in the cavity at specific resonant frequency. To achieve the function of acoustic channel filter, the topological waveguide and the ring resonator are used to separate the sound wave of different frequencies. Finally, a 4-channel acoustic wavelength division demultiplexer is realized by using a Archimedean(3,4,6,4) tiling phononic crystals. The efficiency of the demultiplexer is successfully demonstrated. The transmission is between 47 ~ 68% and is better more than twice as that of the demultiplexer which based on the line defect waveguide.
[1] Yablonovitch, Eli. "Inhibited spontaneous emission in solid-state physics and electronics." Physical Review Letters 58.20 (1987): 2059.
[2] Asbóth, János K., László Oroszlány, and András Pályi. "A short course on topological insulators." Lecture Notes in Physics 919 (2016): 87.
[3] Asker, Andreas. "Axion Electrodynamics and Measurable Effects in Topological Insulators." (2018).
[4] Mehdizadeh, Farhad, and Mohammad Soroosh. "A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities." Photonic Network Communications 31.1 (2016): 65-70.
[5] Mehdizadeh, Farhad, Mohammad Soroosh, and Hamed Alipour-Banaei. "An optical demultiplexer based on photonic crystal ring resonators." Optik 127.20 (2016): 8706-8709.
[6] John, Sajeev. "Strong localization of photons in certain disordered dielectric superlattices." Physical Review Letters 58.23 (1987): 2486.
[7] Yablonovitch, Eli, and T. J. Gmitter. "Photonic band structure: The face-centered-cubic case." Physical Review Letters 63.18 (1989): 1950.
[8] Zheng, Hanbin, and Serge Ravaine. "Bottom-up assembly and applications of photonic materials." Crystals 6.5 (2016): 54.
[9] Sigalas, Michael M., and Eleftherios N. Economou. "Elastic and acoustic wave band structure." Journal of Sound and Vibration 158.2 (1992): 377-382.
[10] Kushwaha, Manvir S., Halevi, P., Dobrzynski, L., and Djafari-Rouhani, B. "Acoustic band structure of periodic elastic composites." Physical Review Letters 71.13 (1993): 2022.
[11] Kushwaha, Manvir S., Halevi, P., Martinez, G., Dobrzynski, L., and Djafari-Rouhani, B. "Theory of acoustic band structure of periodic elastic composites." Physical Review B 49.4 (1994): 2313.
[12] Kushwaha, Manvir S., and Halevi, P. "Band‐gap engineering in periodic elastic composites." Applied Physics Letters 64.9 (1994): 1085-1087.
[13] Kushwaha, Manvir S. "Classical band structure of periodic elastic composites." International Journal of Modern Physics B 10.09 (1996): 977-1094.
[14] Martínez-Sala, Rosa, Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., and Meseguer, F. "Sound attenuation by sculpture." Nature 378.6554 (1995): 241-241.
[15] Jia, Z., Chen, Y., Yang, H., and Wang, L. "Designing phononic crystals with wide and robust band gaps." Physical Review Applied 9.4 (2018): 044021.
[16] Bousfia, A., El Boudouti, E. H., Djafari-Rouhani, B., Bria, D., Nougaoui, A., and Velasco, V. R. "Omnidirectional phononic reflection and selective transmission in one-dimensional acoustic layered structures." Surface Science 482 (2001): 1175-1180.
[17] Manzanares-Martínez, Betsabe, Sánchez-Dehesa, J., Håkansson, A., Cervera, F., and Ramos-Mendieta, F. "Experimental evidence of omnidirectional elastic bandgap in finite one-dimensional phononic systems." Applied Physics Letters 85.1 (2004): 154-156.
[18] Kushwaha, Manvir S. "Stop-bands for periodic metallic rods: Sculptures that can filter the noise." Applied Physics Letters 70.24 (1997): 3218-3220.
[19] Liu, Zhengyou, Che Ting Chan, and Ping Sheng. "Three-component elastic wave band-gap material." Physical Review B 65.16 (2002): 165116.
[20] Liu, Zhengyou, Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T., and Sheng, P. "Locally resonant sonic materials." Science 289.5485 (2000): 1734-1736.
[21] Zhang, Xin, Zhengyou Liu, and Youyan Liu. "The optimum elastic wave band gaps in three dimensional phononic crystals with local resonance." The European Physical Journal B-Condensed Matter and Complex Systems 42.4 (2004): 477-482.
[22] Phani, A. Srikantha, J. Woodhouse, and N. A. Fleck. "Wave propagation in two-dimensional periodic lattices." The Journal of the Acoustical Society of America 119.4 (2006): 1995-2005.
[23] Yeh, Jia-Yi. "Control analysis of the tunable phononic crystal with electrorheological material." Physica B: Condensed Matter 400.1-2 (2007): 137-144.
[24] Yang, Wen-Pei, and Lien-Wen Chen. "The tunable acoustic band gaps of two-dimensional phononic crystals with a dielectric elastomer cylindrical actuator." Smart Materials and Structures 17.1 (2007): 015011.
[25] Ruzzene, M., and A. Baz. "Control of wave propagation in periodic composite rods using shape memory inserts." Journal of Vibration and Acoustics 122.2 (2000): 151-159.
[26] Chen, T., M. Ruzzene, and A. Baz. "Control of wave propagation in composite rods using shape memory inserts: theory and experiments." Journal of Vibration and Control 6.7 (2000): 1065-1081.
[27] James, Richard, et al. "Sonic bands, bandgaps, and defect states in layered structures—
theory and experiment." The Journal of the Acoustical Society of America 97.4 (1995):
2041-2047.
[28] Munday, J. N., C. Brad Bennett, and W. M. Robertson. "Band gaps and defect modes in periodically structured waveguides." The Journal of the Acoustical Society of America 112.4 (2002): 1353-1358.
[29] Sigalas, M. M. "Elastic wave band gaps and defect states in two-dimensional composites." The Journal of the Acoustical Society of America 101.3 (1997): 1256-1261.
[30] Sigalas, M. M. "Defect states of acoustic waves in a two-dimensional lattice of solid cylinders." Journal of Applied Physics 84.6 (1998): 3026-3030.
[31] Kafesaki, M., M. M. Sigalas, and N. Garcı́a. "Wave guides in two-dimensional elastic wave band-gap materials." Physica B: Condensed Matter 296.1-3 (2001): 190-194.
[32] Wu, Fugen, et al. "Point defect states in two-dimensional phononic crystals." Physics Letters A 292.3 (2001): 198-202
[33] Wu, Fugen, Zhengyou Liu, and Youyan Liu. "Splitting and tuning characteristics of the point defect modes in two-dimensional phononic crystals." Physical Review E 69.6 (2004): 066609.
[34] Wu, Liang-Yu, Lien-Wen Chen, and Chia-Ming Liu. "Acoustic pressure in cavity of variously sized two-dimensional sonic crystals with various filling fractions." Physics Letters A 373.12-13 (2009): 1189-1195.
[35] Wu, Liang-Yu, Lien-Wen Chen, and Chia-Ming Liu. "Experimental investigation of the acoustic pressure in cavity of a two-dimensional sonic crystal." Physica B: Condensed Matter 404.12-13 (2009): 1766-1770.
[36] Wu, Liang-Yu, Lien-Wen Chen, and Chia-Ming Liu. "Acoustic energy harvesting using resonant cavity of a sonic crystal." Applied Physics Letters 95.1 (2009): 013506.
[37] Wu, Liang-Yu, and Lien-Wen Chen. "Wave propagation in a 2D sonic crystal with a Helmholtz resonant defect." Journal of Physics D: Applied Physics 43.5 (2010): 055401.
[38] Thomas, Edwin L., Taras Gorishnyy, and Martin Maldovan. "Colloidal crystals go hypersonic." Nature materials 5.10 (2006): 773-774.
[39] Wen, Jihong., Wang, G., Yu, D., Zhao, H., and Liu, Y. "Theoretical and experimental investigation of flexural wave propagation in straight beams with periodic structures: Application to a vibration isolation structure." Journal of Applied Physics 97.11 (2005): 114907.
[40] Miyashita, Toyokatsu. "Sonic crystals and sonic wave-guides." Measurement Science and Technology 16.5 (2005): R47.
[41] Zhang, Xin., Liu, Z., Liu, Y., and Wu, F. "Defect states in 2D acoustic band-gap materials with bend-shaped linear defects." Solid State Communications 130.1-2 (2004): 67-71.
[42] Tol, S., F. L. Degertekin, and A. Erturk. "Phononic crystal Luneburg lens for omnidirectional elastic wave focusing and energy harvesting." Applied Physics Letters 111.1 (2017): 013503.
[43] Oraevsky, Anatolii N. "Whispering-gallery waves." Quantum Electronics 32.5 (2002): 377.
[44] Rayleigh, John William Strutt Baron. "The theory of sound. Vol. 2." Macmillan, 1896.
[45] Ryu, Han-Youl, Masaya Notomi, and Yong-Hee Lee. "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities." Applied Physics Letters 83.21 (2003): 4294-4296.
[46] Ryu, Han-Youl, et al. "High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity." Optics Express 12.8 (2004): 1708-1719.
[47] Nagahara, Ken’ichi, Masato Morifuji, and Masahiko Kondow. "Optical coupling between a cavity mode and a waveguide in a two-dimensional photonic crystal." Photonics and Nanostructures-Fundamentals and Applications 9.3 (2011): 261-268.
[48] Grünbaum, Branko, and Geoffrey Colin Shephard. Tilings and patterns. Courier Dover Publications, 1987.
[49] Myers, Joseph. "Tiling with Regular Star Polygons." (2012).
[50] The Nobel Prize in Physics 2016. NobelPrize.org. Nobel Media AB 2021. (2021). <https://www.nobelprize.org/prizes/physics/2016/press-release/>
[51] Klitzing, K. V., Gerhard Dorda, and Michael Pepper. "New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance." Physical Review Letters 45.6 (1980): 494.
[52] Thouless, David J., Kohmoto, M., Nightingale, M. P., and den Nijs, M. "Quantized Hall conductance in a two-dimensional periodic potential." Physical Review Letters 49.6 (1982): 405.
[53] Fukui, Takahiro, Yasuhiro Hatsugai, and Hiroshi Suzuki. "Chern numbers in discretized Brillouin zone: efficient method of computing (spin) Hall conductances." Journal of the Physical Society of Japan 74.6 (2005): 1674-1677.
[54] Niu, Qian, Ds J. Thouless, and Yong-Shi Wu. "Quantized Hall conductance as a topological invariant." Physical Review B 31.6 (1985): 3372.
[55] Kane, Charles L. "Topological Band Theory and the ℤ2 Invariant." Contemporary Concepts of Condensed Matter Science. Vol. 6. Elsevier, (2013): 3-34.
[56] Berry, Michael Victor. "Quantal phase factors accompanying adiabatic changes." Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 392.1802 (1984): 45-57.
[57] Hatsugai, Yasuhiro. "Chern number and edge states in the integer quantum Hall effect." Physical Review Letters 71.22 (1993): 3697.
[58] Kane, Charles L., and Eugene J. Mele. "Quantum spin Hall effect in graphene." Physical Review Letters 95.22 (2005): 226801.
[59] Hirsch, J. E. "Spin hall effect." Physical Review Letters 83.9 (1999): 1834.
[60] Bernevig, B. Andrei, and Shou-Cheng Zhang. "Quantum spin Hall effect." Physical Review Letters 96.10 (2006): 106802.
[61] Sinova, Jairo, et al. "Spin hall effects." Reviews of Modern Physics 87.4 (2015): 1213.
[62] Pankratov, O. A., S. V. Pakhomov, and B. A. Volkov. "Supersymmetry in heterojunctions: Band-inverting contact on the basis of PbSnTe and HgCdTe." Solid State Communications 61.2 (1987): 93-96.
[63] König, Markus, "Quantum spin Hall insulator state in HgTe quantum wells." Science 318.5851 (2007): 766-770.
[64] He, Cheng, Ni, X., Ge, H., Sun, X. C., Chen, Y. B., Lu, M. H.,and Chen, Y. F. "Acoustic topological insulator and robust one-way sound transport." Nature Physics 12.12 (2016): 1124-1129.
[65] Lu, Jiuyang., Qiu, C., Ye, L., Fan, X., Ke, M., Zhang, F., and Liu, Z. "Observation of topological valley transport of sound in sonic crystals." Nature Physics 13.4 (2017): 369-374.
[66] Lu, Jiuyang,. Qiu, C., Ke, M., and Liu, Z. "Valley vortex states in sonic crystals." Physical Review Letters 116.9 (2016): 093901.
[67] Yang, Yahui, Zhaoju Yang, and Baile Zhang. "Acoustic valley edge states in a graphene-like resonator system." Journal of Applied Physics 123.9 (2018): 091713.
[68] Rostami-Dogolsara, Babak, Mohammad Kazem Moravvej-Farshi, and Fakhroddin Nazari. "Designing switchable phononic crystal-based acoustic demultiplexer." IEEE transactions on ultrasonics, ferroelectrics, and frequency control 63.9 (2016): 1468-1473.
[69] Rostami-Dogolsara, Babak, Mohammad Kazem Moravvej-Farshi, and Fakhroddin Nazari. "Designing phononic crystal based tunable four-channel acoustic demultiplexer." Journal of Molecular Liquids 281 (2019): 100-107.
[70] Dong, Hao-Wen, Yue-Sheng Wang, and Chuanzeng Zhang. "Inverse design of high-Q wave filters in two-dimensional phononic crystals by topology optimization." Ultrasonics 76 (2017): 109-124.
[71] Biswas, Tushar. "Study of extraordinary light guidance in plasmonic hollow core
photonic cryatal fiber PCF and in speciality PCFs at dirac point for emerging niche applications." Diss. University of Calcutta, (2017).
[72] Morales, Rolf Allan Lüders. "Performance of advanced triple-junction (ATJ) solar cells." Diss. Pontificia Universidad Católica de Chile, (2005).
[73] Bansil, Arun, Hsin Lin, and Tanmoy Das. "Colloquium: Topological band theory." Reviews of Modern Physics 88.2 (2016): 021004.
[74] Chen, Jiu-Jiu, Huo, S. Y., Geng, Z. G., Huang, H. B., and Zhu, X. F. "Topological valley transport of plate-mode waves in a homogenous thin plate with periodic stubbed surface." AIP Advances 7.11 (2017): 115215.
[75] Zhang, Peng. "Advanced industrial control technology. " William Andrew, (2010).
[76] Stormer, Horst L. "Nobel lecture: the fractional quantum Hall effect." Reviews of Modern Physics 71.4 (1999): 875.
[77] Bao, Wenzhong. "Electrical and mechanical properties of graphene." University of California, Riverside, (2012).
[78] Kane, Charles L., and Eugene J. Mele. "Physics. A new spin on the insulating state." Science (New York, NY) 314.5806 (2006): 1692-3.
[79] Naoto Nagaosa. "A New State of Quantum Matter." Science 318.5851 (2007): 758-759.
[80] 駱巖紅, 趙寰宇, and 李公平, "基于晶格效應的光子晶體帶隙特性研究," 光子 學報, no. 12, (2014).
校內:2026-07-11公開