| 研究生: |
洪育凱 Hung, Yu-Kai |
|---|---|
| 論文名稱: |
貼附有壓電片之多跨距Mindlin板承受移動負載之動態分析 Dynamic Analysis of Moving Load on Multi-span Mindlin Plate Surface-Mounted with Piezoelectric Layer |
| 指導教授: |
王榮泰
Wang, Rong-Tyai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 多跨距之簡支撐板 、壓電片 、模態法 、移動負載 、電荷 |
| 外文關鍵詞: | Multi-span Mindlin plate, Piezoelectric, modal analysis, moving load, electric charge |
| 相關次數: | 點閱:61 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討一塊貼附有壓電片之多跨距Mindlin簡支撐板在承受移動負載時的振動分析,結構上層為鋁板,並在其下方貼附有壓電片。利用模態法來計算整體結構之自然振動頻率,並探討此多跨距結構板在承受移動負載下之動態響應。
模態法方面,為了解壓電簡支撐板之力學行為,需利用應力場、應變場及結構位移關係於求出應變能、動能。再以Hamilton’s principle建立 結構之運動方程式,進而求得模態頻率與模態函數,並探討在不同結構參數的情況下對於模態頻率之影響。
應用模態法分析結果為基礎,在結構上施加一移動負載,接著利用模態疊加法及Runge-Kutta數值方法求解結構承受移動負載之動態響應,進而探討結構之響應、電荷收集情形、壓電效應電壓,最後也探討移動負載之速度對於整體結構響應的變化,以及找出移動負載之臨界速度。
The purpose of this thesis is to explore the dynamic analysis of the multi-span Mindlin plate with a piezoelectric segment surfaced-mounted on each span. The governing equations and boundary conditions of the entire plate are derived via the Hamilton’s principle. The natural frequencies and the corresponding sets of mode shape functions are obtained by analytical method. The method of modal analysis is adopted to investigate the dynamic responses of the host plate and the electric charge accumulated on the surfaces of the piezoelectric segment caused by a moving load. The effects of moving velocity of the load and the geometric parameters of the piezoelectric segment on both histories of the displacement of the host plate and the electric charge accumulation on the piezoelectric surfaces are investigated.
There is a critical velocity of the moving load to cause the absolute maximum deflection of the host plate. Furthermore, there is another critical velocity of the moving load to induce make the absolute maximum electric charge on the surfaces of the piezoelectric segment. As the number of span is increased, the maximum displacement at the center of the first span of the simply-supported multi-span plate is reduced.
1. R. D. Mindlin, “Influence of rotary inertia and shear on flexural motions of isotropic elastic plates,” Journal of Applied Mechanics, Vol. 18, pp.31-38, 1951.
2. R. D. Mindlin, A. Schacknow and H. Deresiewicz, “Flexural vibrations of rectangular plates,” Journal of Applied Mechanics, Vol. 23, pp. 431-436, 1955.
3. E. Reissner and Y. Stavsky, “Bending and stretching of certain types of heterogeneous aeolotropic elastic plates,” Journal of Applied Mechanics, Vol. 28, pp. 402-408, 1961.
4. A. W. Leissa, “The free vibration of rectangular plates,” Journal of Sound and Vibration, Vol. 31, pp. 257-293, 1973.
5. N. S. Putcha and J. N. Reddy, “Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory,” Journal of Sound and Vibration, Vol. 21, pp. 2201-2219, 1985.
6. J. N. Reddy, Mechanics of Laminated Composite Plates: Theory and Analysis, CRC Press, 1997.
7. Y. Xing and B. Liu, “Closed form solutions for free vibrations of rectangular Mindlin plates,” Acta Mechanica Sinica, Vol. 25, pp. 689-698, 2009.
8. J. A. Gbadeyan and S. T. Oni, “Dynamic behavior of beams and rectangular plates under moving loads,” Journal of Sound and Vibration, Vol. 182, pp. 677-695, 1995.
9. J. S. Wu, M. L. Lee and T. S. Lai, “The dynamic analysis of a flat plate under a moving load by the finite element method,” International Journal for Numerical Methods in Engineering, Vol. 24, pp. 743-762, 1987.
10. J. J. Wu, A. R. Whittaker and M. P. Cartmell, “The use of finite element techniques for calculating the dynamic response of structures to moving loads,” Computers & Structures, Vol.78, pp. 789-799, 2000.
11. C. Johansson and C. Pacoste, “Closed-form solution for the mode superposition analysis of the vibration in multi-span beam bridges caused by concentrated moving loads,” Computers & Structures, Vol.119, pp. 85-94, 2013.
12. R.D. Mindlin, “Forced thickness – shear and flexural vibrations of piezoelectric crystal plates,” Journal of Applied Physics, Vol. 22, pp.83-88, 1952.
13. A. Fernandes and J. Pouget, “Accurate modelling of piezoelectric plates: single-layered plate,” Archive of Applied Mechanics, Vol.71, pp.509-524, 2001.
14. A. Fernandes and J. Pouget, “Two-dimensional modelling of laminated piezoelectric composites: analysis and numerical results,” Thin-Walled Structures, Vol.39, pp. 3-22, 2001.
校內:2023-07-01公開