簡易檢索 / 詳目顯示

研究生: 鄭淑珺
Cheng, Shu-chun
論文名稱: 製程氣混燒分析與對沖流擴散火焰合成奈米碳管研究
Co-Firing of Manufactured Gases and Synthesis of Carbon Nanotubes in Counterflow Diffusion Flames
指導教授: 林大惠
Lin, Ta-hui
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 133
中文關鍵詞: 火焰合成擴散火焰奈米碳管對沖流焦爐氣製程氣高爐氣
外文關鍵詞: Blast Furnace Gas, Flame Synthesis, Counterflow, Manufactured Gases, Diffusion Flame, Coke Oven Gas, Carbon Nanotubes
相關次數: 點閱:129下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的在於利用理論分析工業爐單燒和混燒高爐氣的熱能轉換特性,以作為實務上單燒高爐氣之參考依據,進而評估其操作條件與時機。首先探討燃料使用量、化學計量空氣需求量、絕熱火焰溫度、煙道氣排放量等四項重要參數對製程氣燃燒特性的影響,接著分析單燒和混燒高爐氣之加熱能力比。結果得到:在化學計量比且無預熱條件下,單燒高爐氣時需要大量的燃氣才可達到預定產熱;以高熱值燃氣混燒高爐氣,則燃氣量會因而減少,但燃燒空氣卻會因此增加,而絕熱火焰溫度與加熱能力比均會隨之上升。在固定製程氣混燒比例之條件下,當爐壁溫度越高,則混燒系統對爐壁之加熱能力比越低。當單燒高爐氣時,煙道氣富含進氣時高爐氣本身的不可燃氣,故其體積流率高;若混燒高爐氣,煙道氣體積流率會隨高爐氣的減少而降低。此外,最後更進一步探討增加10%的過剩空氣和0.1MW的預熱條件下,對製程氣混燒後之燃燒特性與加熱能力比的影響。
    其次,本研究亦利用空氣-乙烯對沖流擴散火焰進行燃燒合成碳米碳管的實驗分析,探討溫度場、沉積位置與硝酸鎳濃度等三項參數,對於火焰合成奈米碳管的影響。結果發現火焰面溫度過高,易使金屬觸媒與火焰區內的不飽和自由基反應變成碳-金屬合金;反之,遠離火焰面溫度過低,會使觸媒失去活性而得到碳煙。在相同的徑向位置中,沿著火焰面往燃料端軸向移動,熱解離產生的不飽和自由基濃度變化為由少變多再變少,故奈米碳管生成變化為由無變有再變無。在鎳網格塗佈硝酸鎳條件下,可以增加碳管管長與生成量。

    BFG is blast furnace gas, which is a fuel gas produced in quantities in the steelmaking process. For effective use of this BFG, it is significant to develop the technology of firing BFG individually without the support fuel, such as natural gas (NG) and heavy oil. However, as compared with the fuel of BFG in combination with coke oven gas (COG) or NG, BFG is low in calorie because of high rate of inert gas such as nitrogen and carbon dioxide. Owing to this special fuel condition, many technical problems, such as slow burning velocity and flame stability, remain to be solved in using BFG individually as the fuel for hot gas stoves and boilers. The combustion characteristics of firing BFG, individually or in combination with COG or NG, including fuel gas volume flow rate, air volume flow rate, adiabatic flame temperature, flue gas composition, and thermal efficiency were analyzed.
    Results show that under the operating conditions of stoichiometry and without preheat at the same heat release rate, the fuel gas volume flow rate of firing BFG individually is greater than that of firing BFG with support fuel. The smaller air volume flow rate, the lower adiabatic flame temperature and the lower thermal efficiency of the former are found for the former as compared with the latter. However, the volume flow rate of flue gas for the former is greater than the latter because it contains a large amount of inert gases in the flue gas. Additionally, the combustion characteristics of firing BFG, individually or in combination with COG or NG were also discussed under the operating conditions of adding ten percent excess air and/or 0.1MW preheat.
    Moreover, the synthesis of carbon nanotubes (CNTs) on a catalytic nickel substrate in counter-flow diffusion flames was investigated experimentally. The effects of sampling positions, gas temperature distributions and the concentration of nickel nitrate on the synthesis of CNTs were examined. Curved and entangled tubular multi-walled CNTs are harvested, which have both typical straight tubular and bamboo-like structures. Besides curved CNTs, helically coiled tubular CNTs are also synthesized.
    Because of the flame surface with high temperature, the metal catalyst can easily react with the unsaturated free radical in the flame zone to form the carbon-metal alloy; whereas, the metal catalyst can lose its activity and obtain the soot in the position away from the flame surface in which the gas temperature is low. In the same radial position, the variation of the yield of CNTs is from no CNTs to agglomeration and then no CNTs. This is because the sample position moves along a vertical line from the flame surface to the upper burner corresponding to the concentration of unsaturated free radical from rare to dense and then rare. Using a Ni(NO3)2-coated substrate has advantages over uncoated Ni substrates, which can increase the length and the quantity of CNTs.

    總目錄 I 表目錄 IV 圖目錄 V 符號說明 XIV 一、前言 1 1-1 工業爐 1 1-2 工業爐燃料 3 1-2-1 固態燃料 4 1-2-2 液態燃料 4 1-2-3 氣態燃料 5 1-2-4 天然氣 6 1-3 製程氣 8 1-3-1 煉焦爐氣 8 1-3-2 高爐氣 11 1-4 文獻回顧 15 1-5 研究背景及目的 18 二、研究方法 20 2-1 燃燒特性分析 20 2-1-1 進氣流率 20 2-1-2 絕熱火焰溫度 23 2-1-3 煙道氣組成 25 2-2 加熱能力比分析 26 三、製程氣混燒分析 28 3-1 燃燒特性分析 28 3-1-1 兩種製程氣混燒系統 28 3-1-2 三種製程氣混燒系統 34 3-2 加熱能力比分析 38 3-2-1 兩種製程氣混燒系統 39 3-2-2 三種製程氣混燒系統 43 四、結論 46 五、參考文獻 49 六、圖表 52 七、附錄--對沖流擴散火焰合成奈米碳管 97 7-1 前言 97 7-1-1 文獻回顧 97 7-1-2 研究目的 99 7-2 實驗設備及檢測系統 99 7-2-1 燃燒器系統 100 7-2-2 金屬觸媒基板沉積物取樣系統 101 7-2-3 溫度量測系統 102 7-2-4 奈米碳管檢測系統 102 7-3 實驗步驟與方法 104 7-3-1 實驗參數設定 104 7-3-2 火焰溫度場之分析 105 7-4 結果與討論 105 7-4-1 火焰溫度場之分析 105 7-4-2 奈米碳管之分析 106 7-5 結論 115 7-6 參考文獻 117 7-7 附錄圖形 119

    1.中國大百科全書,http://library.mit.edu.tw:8080/。
    2.何秀玲,“古代生成,現代展風華--煤的概述”,能源報導,5-7頁,民國92年4月。
    3.陳大麟,“石油、天然氣的特性”,科學發展,第356期,60-63頁,民國91年8月。
    4.中國石油公司網頁,http://www.cpc.com.tw/big5/home/index.asp。
    5.Hoppesteyn, P. and van den Bemt, J., “What are the fuel properties of Coke Oven Gas,” No. 239, The IFRF Online Combustion Handbook, 2003.
    6.天然氣,維基百科(http://zh.wikipedia.org/w/index.php?title=%E9%A 6%96%E9% A1%B5&variant=zh-hk)。
    7.梁敬修,“中華民國瓦斯工業現況”,中日韓三國瓦斯協會圓桌會議專案報告,民國95年4月24日。
    8.陳湘怡,“一貫作業鋼鐵廠之質能平衡與汽電共生分析”,國立成功大學機械工程研究所碩士論文,民國93年6月。
    9.Hoppesteyn, P. and van den Bemt, J., “What are the combustion and flue gas properties of Coke Oven Gas,” No. 240, The IFRF Online Combustion Handbook, 2003.
    10.Hoppesteyn, P. and van den Bemt, J., “What is the composition of Blast Furnace Gas,” No. 242, The IFRF Online Combustion Handbook, 2003.
    11.Hoppesteyn, P. and van den Bemt, J., “What are the combustion and flue properties of Blast Furnace Gas,” No. 243, The IFRF Online Combustion Handbook, 2003.
    12.Fricker, N., “What are the options for the beneficiation of Blast Furnace Gas,” No. 249, The IFRF Online Combustion Handbook, 2003.
    13.馬曉茜,“燃氣互換性與火焰穩定性研究”,燃燒科學與技術,中國,2卷1期,46-53頁,1996。
    14.張興良,“寶鋼燃料系統優化初探”,冶金動力,中國,3期,19-22頁,2001。
    15.虞亞輝、于立軍、施伯紅,“多種燃料混燒及單燒鍋爐效率間的關係”,上海交通大學學報,中國,35卷8期,1200-1202頁,2001。
    16.張智剛、朱文蓓、曹子棟,“全燃和摻燃高爐煤氣爐的比較研究”,鍋爐技術,中國,36卷1期,53-56頁,2005。
    17.王鐵民,“全燃高爐煤氣鍋爐特性分析”,冶金動力,中國,14期,55-56頁,2005。
    18.張成群、梁占林,“燃氣鍋爐的技術改造實踐及淺析”,冶金動力,中國,6期,9-13頁,2005。
    19.孫穎軍、彭國勝、陳建磊,“雙燃料燃燒方式在蓄熱式加熱爐上的研究與應用”,工業爐,中國,28卷2期,26-28頁,2006。
    20.Paubel, X., Cessou, A., Honore, D., Vervisch, L. and Tsiava, R., “A flame stability diagram for piloted non-premixed oxycombustion of low calorific residual gases,” Proceedings of the Combustion Institute, Vol. 31, pp. 3385-3392, 2007.
    21.能源政策白皮書(http://www.moeaec.gov.tw/policy/EnergyWhitePape r/94/index/index.html),經濟部能源局,民國94年。
    22.“中鋼推動臨海工業區區域性能源整合” (http://www.csc.com.tw/ csc/nc/news.asp?newsId=172),中鋼新聞中心,民國93年2月4日。
    23.魏顯明,“塑膠類產業廢棄物回收可燃氣體”,減廢資訊,第22期,42-43頁,民國81年4月。
    24.陳正文,“低壓廢氣回收做為燃料氣”,減廢資訊,第35期,47-51頁,民國83年6月。
    25.“中鋼公司自產氣分析”,中鋼公司公用設施處,民國95年7月5日。
    26.Fricker, N., “How do I estimate the adiabatic flame temperature of BFG flames with beneficiation,” No. 251, The IFRF Online Combustion Handbook, 2003.
    27.侯順雄,“燃燒科技與能源應用”,科學發展,第355期,12-17頁,民國91年7月。
    28.Fricker, N., “How do I estimate the effect of beneficiation on the efficiency of BFG fired furnaces relative to natural gas firing,” No. 250, The IFRF Online Combustion Handbook, 2003.
    附錄參考文獻
    1.Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. and Smalley, R. E., “C60: Buckminsterfullerene,” Nature, Vol. 318(6042), pp. 162-163, 1985.
    2.Iijima, S., “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp. 56-58, 1991.
    3.Ebbesen, T. W. and Ajayan, P. M., “Large-Scale Synthesis of Carbon Nanotubes,” Nature, Vol. 358, pp. 220-221, 1992.
    4.These, A., Lee, R., Nikolaev, P., Dai, H.J. and Robert, J. “Crystalline Ropes of Metallic Carbon Nanotubes,” Science, Vol.273, pp.483-487, 1996.
    5.Andrews, R., Jacques, D., Rao, A. M., Derbyshire, F., Qian, D., Fan, X. and Dickey, E. C., “Continuous Production of Aligned Carbon Nanotubes: a Step Closer to Commercial Realization,” Chemical Physics Letters, Vol. 303, pp. 467-474, 1999.
    6.趙以諾,“奈米碳材料製造技術與設備簡介”,機械工業,第267期,79-88頁,民國94年6月。
    7.Merchan-Merchan, W., Savelive, A. V., Kennedy, L. A. and Fridman, A., “Formation of Carbon Nanotubes in Counter-Flow, Oxy-Methane Diffusion Flames without Catalysts,” Chemical Physics Letters, Vol. 354, pp. 20-24, 2002.
    8.Saveliev, A. V., Merchan-Merchan, W. and Kennedy, L. A., “Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame,” Combustion and Flame, Vol. 135, pp. 27-33, 2003.
    9.Merchan-Merchan, W., Saveliev, A. V. and Kennedy, L. A., “High-rate flame synthesis of vertically aligned carbon nanotubes using electric field control,” Carbon, Vol. 42, pp. 599-608, 2004.
    10.Lee, G. W., Jurng, J. and Hwang, J., “Formation of Ni-Catalyzed Multiwalled Carbon Nanotubes and Nanofibers on a Substrate Using an Ethylene Inverse Diffusion Flame,” Combustion and Flame, Vol. 139, pp. 167-175, 2004.

    下載圖示 校內:2012-07-26公開
    校外:2017-07-26公開
    QR CODE