簡易檢索 / 詳目顯示

研究生: 何文傑
He, Wen-Jie
論文名稱: 砂土承受垂直振動變形之初步研究
The Preliminary Study of the Deformation of Sand Subjected to Vertical Vibration
指導教授: 倪勝火
Ni, Sheng-Huo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 175
中文關鍵詞: 高速鐵路垂直振動共振柱
外文關鍵詞: vertical vibration, high speed train, sand, resonant column
相關次數: 點閱:233下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究主要目的在於利用Stokoe型垂直-扭轉共振柱與視窗化共振柱程式評估不同圍壓下乾砂(ASTM C-109渥太華標準砂)受到垂直振動之反應。試驗項目一共包括三種:
    1.找出乾砂在不同振幅和頻率之垂直振動下所造成的加速度大小及應變量。
    2.找出乾砂在不同振幅和頻率之扭轉振動下所造成的加速度大小及應變量。並比較垂直與扭轉振其結果之差異。
    3.討論乾砂受線性垂直振動後其動態性質變化。
      本研究之試體由經乾搗法製成。垂直振動之設計則參考台灣高速鐵路經台南科學園區段所產生之振動量。
      根據實驗結果顯示,垂直振動對乾砂的影響較扭轉振動不穩定。且當振動頻率不在共振頻帶時,所反應出之加速度變化不大,所反應出之應變量近似與頻率的平方成反比。乾砂經過線性垂直振動後其動力性質無明顯的變化。許多誤差可能導致更大的影響。但據本文結果顯示線性垂直振動對乾砂影響並不十分重要。

      The purpose of this study is to assess the effect of dry sand (Ottawa sand, ASTM C-109)subjected to vertical vibration with different confined pressures using the Stokoe’s vertical/torsional resonant column device and windows-based RCT program. The experimental project includes three purposes:
    1.To study the acceleration and strain amplitude of dry sand subjected to vertical vibration with different amplitude and frequency.
    2.To study the acceleration and strain amplitude of dry sand subjected to torsional vibration with varying conditions. Then compare their result with the different resolution of vertical and torsional vibration.
    3.To study the dynamic property behavior of dry sand under linear vertical vibration.
      The specimens of all tests are made of dry tamping. The design of vertical vibration is major reference to the vibration spectrum induced by Taiwan High Speed Train in Southern Taiwan Science Park.
      According to the results, the response of dry sand under vertical vibration is more unstable than it under torsional vibration. If the vibration frequency is not within the resonant bandwidth, the respondent acceleration will change a little, and the respondent strain will be inversely proportional to the square of frequency. The dynamic property of dry sand after linear vertical vibration doesn’t change obviously. The results of this study seem to show that the effect of the linear vertical vibration on the settlement of dry sand is not very important.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XIII 符號說明 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究目的 1 1.3 研究的方法與內容 2 第二章 文獻回顧與動態參數理論 5 2.1 前言 5 2.2 室內試驗法簡介 5 2.3 共振柱發展的重要歷程 6 2.4 土壤動態特性 7 2.4.1 剪力模數 8 2.4.2 阻尼比 14 2.4.3 楊氏模數 16 2.4.4 柏松比 17 第三章 垂直-扭轉共振柱的理論與比較 20 3.1 前言 20 3.2 共振柱波傳方程式理論 20 3.2.1 共振柱波傳理論之基本假設 20 3.2.2 共振柱垂直縱向振動之波傳理論之推導 21 3.2.3 共振柱水平扭轉振動之波傳理論之推導 25 3.3 共振柱之應變量計算 31 3.3.1 共振柱試驗應變之形狀函數 31 3.3.2 加速度計位移的計算 33 3.3.3 加速度計的位移推求應變量大小 34 3.4 垂直與扭轉振動的理論比較 35 第四章 試體製作與垂直共振柱視窗化驗證 42 4.1 前言 42 4.2 重模試體製作與儀器安裝步驟 42 4.2.1 重模試體製作程序 42 4.2.2 共振柱儀器安裝程序 44 4.3 共振柱的儀器的執行原理 45 4.4 垂直共振柱之視窗化 46 4.4.1 垂直縱向共振柱之視窗化方法 47 4.4.2 垂直縱向共振柱之限制 48 4.5 垂直縱向共振柱視窗化程式之正確性驗證 50 4.5.1 初掃、細掃與自由振盪衰減法的趨勢 50 4.5.2 楊氏模數、壓力波速與柏松比 52 4.6 測試視窗 53 4.6.1 測試視窗輸入介紹 54 4.6.2 測試視窗的運作 55 第五章 乾砂受垂直振動影響之試驗與討論 74 5.1 前言 74 5.2 垂直振動之驅動電壓於乾燥砂土產生的反應 74 5.2.1 振動頻率控制 75 5.2.2 振動次數控制 76 5.2.3 驅動電壓變化控制 76 5.2.4 垂直振動之驅動電壓對砂土的影響與討論 76 5.3 垂直振動之驅動頻率於乾燥砂土產生的反應 80 5.3.1 振動時間控制 80 5.3.2 驅動電壓控制 81 5.3.3 振動頻率控制 81 5.3.4 垂直振動之驅動頻率對砂土的影響與討論 81 5.4 扭轉振動之驅動電壓於乾燥砂土產生的反應 83 5.4.1 扭轉振動之驅動電壓對砂土的影響與討論 84 5.5 扭轉振動之驅動頻率於乾燥砂土產生的反應 85 5.5.1 扭轉振動與振動頻率之關係 85 5.6 垂直振動的顆粒堆積變化 88 5.6.1 標準砂染色方式 88 5.6.2 標定試體制作 89 5.6.3 染色試驗結果 89 5.6.4 該試驗之振動量的大小討論 90 5.7 線性範圍的垂直振動與砂土的動態特性關係 91 5.7.1 求得橋墩正下方振幅大小的方法 91 5.7.2 十萬次垂直振動以下對乾燥砂土之影響 93 5.8 實驗結果整理 94 第六章 結論與建議 107 6.1 結論 107 6.2 建議 108 參考文獻 110 附錄A 高速鐵路振動資料 114 附錄B 共振柱儀器與重模工具介紹 125 B.1 水平扭轉共振柱儀器介紹 126 B.2 垂直縱向共振柱的儀器介紹 129 B.3 制作重模試體所需之工具 130 附錄C 垂直振動各別試驗結果 140 附錄D振動力學求阻尼比 151 D.1 自由振盪衰減法 152 D.2 半功率頻寬法 156 附錄E 固定次數振動後動態性質變化試驗結果 163

    1. 王金山,「共振柱試驗之土壤動力性質」,碩士論文,國立中央大學土木工程研究所,桃園(2004)。
    2. 吳偉特,「土壤動力學與大地工程」,地工技術雜誌,第九期,第5-19頁(1985)。
    3. 林育正,「垂直/ 扭轉共振柱法應用於量測土壤動態特性之研究」,碩士論文,國立成功大學土木工程研究所,台南(1993)。
    4. 倪勝火,「乾砂之電腦輔助共振/ 扭轉剪力試驗之研究」,行政院國家科學委員會專題研究計畫成果報告,台南(1989)。
    5. 徐瑞旻,「共振柱試驗程式視窗化之研究」,碩士論文,國立成功大學土木工程研究所,台南(2002)。
    6. 游旻達,「高鐵列車在南科園區引致振動之影響研究」,碩士論文,國立成功大學土木工程研究所,台南(2006)。
    7. 鄧勝益,「共振柱試驗自動化之探討與研究」,碩士論文,國立成功大學土木工程研究所,台南(1995)。
    8. Afifi, S.S., and Richart, F.E., Jr., “Stress-History Effect on Shear Modulus of Soils,” Soil and Foundations (Japan), Vol. 13, No. 1, pp. 77-95 (1973).
    9. Anderson, D.G., “Dynamic Modulus of Cohesives Soils,” Thesis Presented to the University of Michigan, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, 311p. (1974).
    10. Anderson, D.G., and Stokoe, K.H., II, “Shear Modulus: A Time-Dependent Soil Property,” Dynamic Geotechnical Testing, ASTM, STP 654, ASTM, pp. 66–90 (1978).
    11. Casagrande, A., Corso, J.M., and Wilson, S.D., “Report to Waterways Experiment Station on the 1949-1950 Program of Investigation of Effect of Long-Time Loading on the Strength of Clay and Shales at Constant Water Content,” Contract Report, No. 3-3, U.S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss., Prepared by Harvard University, Cambridge, Mass (1950).
    12. Drnevich, V.P., “Effect of Strain History on the Dynamic Properties of Sand, ” PH.D. Division, University of Michigan, Ann Arbor (1967).
    13. Hardin, B.O., “The Nature of Stress-Strain Behavior of Soils,” State-of-the-Art Report, Proc. ASCE Specialty Conference on Earthquake Engineering and Soil Dynamics, Pasadena, CA, Vol. 1, pp. 3-90 (1978).
    14. Hardin, B.O., and Black, W.L., “Vibration Modulus of Normally Consolidated Clay,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM2, March, pp. 353-369 (1968).
    15. Hardin, B.O., and Drnevich, V.P., “Shear Modulus and Damping in Soil: Measurement and Parameter Effects,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM6, June, pp. 603-624 (1972).
    16. Hardin, B.O., and Richart, F.E., Jr., “Elastic Wave Velocities in Granular Soils,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. SM1, March, pp. 33–65 (1963).
    17. Humphries, W.K., and Wahls, H.E., “Stress History Effects on Dynamic Modulus of Clay,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 94, No. SM2, March, pp. 371-289 (1968).
    18. Ishimoto, M., and Iida, K., “Determination of Elastic Constants of Soils by Means of Vibration Methods,” Bulletin of the Earthquake Research Institute, Tokyo Imperial University, Vol. 15 (1937).
    19. Knight, J.B., “External Boundaries and Internal Shear Bands in Granular Convection,” Phys. Rev. E., Vol. 55, No. 5, pp. 6016-6023 (1997).
    20. Kramer, S.L., Geotechnical Earthquake Engineering, Prentice-Hall, Inc., New Jersey (1996).
    21. Marcuson, W.F., III, and Wahls, H.E., “Time Effects on Dynamic Shear Modulus of Clays,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 98, SM12, pp. 1359–1373 (1972).
    22. Mitchell, J.K., Fundamentals of Soil Behavior, John Wiley & Sons, Inc., New York (1976).
    23. Ni, S.H., Documentation of Resonant Column Test Program RCTEST, Soil Dynamics Laboratory, Department of Civil Engineering, National CHENG-KUNG University, 115p. (1992).
    24. Novak, M., and Kim, T.C., “Resonant Column Technique for Dynamic Testing of Cohesive Soils,” Canada Geotechnical Journal, Vol. 18, pp. 448-455 (1981).
    25. Ohsaki, Y., and Iwasaki, R., “Shear Moduli and Poisson’s Ratios of Soil Deposits,” Soil and Foundations (Japan), Vol. 13, No. 4, Dec., pp. 61-73 (1973).
    26. Reddy, K.R., Saxena, S.K., and Woods, R.O., “Dynamic Moduli and Damping Ratio for Cemented Sands at Low Strains,” Canada Geotechnical Journal, Vol. 25, pp. 353-368 (1988).
    27. Richart, F.E., Hall, J.R., and Woods, R.D., Vibrations of Soils and Foundations, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 414p. (1970).
    28. Richter, S., and Huber, G., “Time-Dependent Behavior of Fine-Grained Model Material in Resonant Column Experiments,” Granular Matter, Vol. 4, No. 6, Dec., pp. 195-206 (2004).
    29. Rosato, A.D., Lan, Y., and Wang, D.T., “Vibratory Particle Size Sorting in Multi-Component Systems,” Powder Technol., Vol. 66, pp. 149-160 (1991).
    30. Shibata, T., and Soelarno, D.S., “Stress Strain Characteristics of Sands Under Cyclic Loading,” Proc., Japanese Society of Civil Engineering, No. 239, pp. 57-65 (1975).
    31. Silver, M.L., “Load Deformation and Strength Behavior of Soils under Dynamic Loading,” State-of-the-Art Paper, International Conference on Recent Advances in Geotechnical Earthquake and Soil Dynamics, St. Louis, Vol. 3, April, pp. 873-894 (1981).
    32. Skoglund, G.R., Marcuson, W.F., III, and Cunny, R.W., “Evaluation of Resonant Column Dynamic Testing Devices,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No. GT11, pp. 1147-1158 (1976).
    33. Stevens, H.W., “Suggested Method of Test for Some Viscoelastic Properties of Materials, Especially Frozen and Nonfrozen Soils, under Vibratory Loads,” Special Procedures for Testing Soil and Rock for Engineering Purposes, STP 479, June, pp. 530-546(1970).

    下載圖示 校內:2008-07-26公開
    校外:2008-07-26公開
    QR CODE