| 研究生: |
何文傑 He, Wen-Jie |
|---|---|
| 論文名稱: |
砂土承受垂直振動變形之初步研究 The Preliminary Study of the Deformation of Sand Subjected to Vertical Vibration |
| 指導教授: |
倪勝火
Ni, Sheng-Huo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 175 |
| 中文關鍵詞: | 高速鐵路 、砂 、垂直振動 、共振柱 |
| 外文關鍵詞: | vertical vibration, high speed train, sand, resonant column |
| 相關次數: | 點閱:233 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的在於利用Stokoe型垂直-扭轉共振柱與視窗化共振柱程式評估不同圍壓下乾砂(ASTM C-109渥太華標準砂)受到垂直振動之反應。試驗項目一共包括三種:
1.找出乾砂在不同振幅和頻率之垂直振動下所造成的加速度大小及應變量。
2.找出乾砂在不同振幅和頻率之扭轉振動下所造成的加速度大小及應變量。並比較垂直與扭轉振其結果之差異。
3.討論乾砂受線性垂直振動後其動態性質變化。
本研究之試體由經乾搗法製成。垂直振動之設計則參考台灣高速鐵路經台南科學園區段所產生之振動量。
根據實驗結果顯示,垂直振動對乾砂的影響較扭轉振動不穩定。且當振動頻率不在共振頻帶時,所反應出之加速度變化不大,所反應出之應變量近似與頻率的平方成反比。乾砂經過線性垂直振動後其動力性質無明顯的變化。許多誤差可能導致更大的影響。但據本文結果顯示線性垂直振動對乾砂影響並不十分重要。
The purpose of this study is to assess the effect of dry sand (Ottawa sand, ASTM C-109)subjected to vertical vibration with different confined pressures using the Stokoe’s vertical/torsional resonant column device and windows-based RCT program. The experimental project includes three purposes:
1.To study the acceleration and strain amplitude of dry sand subjected to vertical vibration with different amplitude and frequency.
2.To study the acceleration and strain amplitude of dry sand subjected to torsional vibration with varying conditions. Then compare their result with the different resolution of vertical and torsional vibration.
3.To study the dynamic property behavior of dry sand under linear vertical vibration.
The specimens of all tests are made of dry tamping. The design of vertical vibration is major reference to the vibration spectrum induced by Taiwan High Speed Train in Southern Taiwan Science Park.
According to the results, the response of dry sand under vertical vibration is more unstable than it under torsional vibration. If the vibration frequency is not within the resonant bandwidth, the respondent acceleration will change a little, and the respondent strain will be inversely proportional to the square of frequency. The dynamic property of dry sand after linear vertical vibration doesn’t change obviously. The results of this study seem to show that the effect of the linear vertical vibration on the settlement of dry sand is not very important.
1. 王金山,「共振柱試驗之土壤動力性質」,碩士論文,國立中央大學土木工程研究所,桃園(2004)。
2. 吳偉特,「土壤動力學與大地工程」,地工技術雜誌,第九期,第5-19頁(1985)。
3. 林育正,「垂直/ 扭轉共振柱法應用於量測土壤動態特性之研究」,碩士論文,國立成功大學土木工程研究所,台南(1993)。
4. 倪勝火,「乾砂之電腦輔助共振/ 扭轉剪力試驗之研究」,行政院國家科學委員會專題研究計畫成果報告,台南(1989)。
5. 徐瑞旻,「共振柱試驗程式視窗化之研究」,碩士論文,國立成功大學土木工程研究所,台南(2002)。
6. 游旻達,「高鐵列車在南科園區引致振動之影響研究」,碩士論文,國立成功大學土木工程研究所,台南(2006)。
7. 鄧勝益,「共振柱試驗自動化之探討與研究」,碩士論文,國立成功大學土木工程研究所,台南(1995)。
8. Afifi, S.S., and Richart, F.E., Jr., “Stress-History Effect on Shear Modulus of Soils,” Soil and Foundations (Japan), Vol. 13, No. 1, pp. 77-95 (1973).
9. Anderson, D.G., “Dynamic Modulus of Cohesives Soils,” Thesis Presented to the University of Michigan, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, 311p. (1974).
10. Anderson, D.G., and Stokoe, K.H., II, “Shear Modulus: A Time-Dependent Soil Property,” Dynamic Geotechnical Testing, ASTM, STP 654, ASTM, pp. 66–90 (1978).
11. Casagrande, A., Corso, J.M., and Wilson, S.D., “Report to Waterways Experiment Station on the 1949-1950 Program of Investigation of Effect of Long-Time Loading on the Strength of Clay and Shales at Constant Water Content,” Contract Report, No. 3-3, U.S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss., Prepared by Harvard University, Cambridge, Mass (1950).
12. Drnevich, V.P., “Effect of Strain History on the Dynamic Properties of Sand, ” PH.D. Division, University of Michigan, Ann Arbor (1967).
13. Hardin, B.O., “The Nature of Stress-Strain Behavior of Soils,” State-of-the-Art Report, Proc. ASCE Specialty Conference on Earthquake Engineering and Soil Dynamics, Pasadena, CA, Vol. 1, pp. 3-90 (1978).
14. Hardin, B.O., and Black, W.L., “Vibration Modulus of Normally Consolidated Clay,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM2, March, pp. 353-369 (1968).
15. Hardin, B.O., and Drnevich, V.P., “Shear Modulus and Damping in Soil: Measurement and Parameter Effects,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM6, June, pp. 603-624 (1972).
16. Hardin, B.O., and Richart, F.E., Jr., “Elastic Wave Velocities in Granular Soils,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. SM1, March, pp. 33–65 (1963).
17. Humphries, W.K., and Wahls, H.E., “Stress History Effects on Dynamic Modulus of Clay,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 94, No. SM2, March, pp. 371-289 (1968).
18. Ishimoto, M., and Iida, K., “Determination of Elastic Constants of Soils by Means of Vibration Methods,” Bulletin of the Earthquake Research Institute, Tokyo Imperial University, Vol. 15 (1937).
19. Knight, J.B., “External Boundaries and Internal Shear Bands in Granular Convection,” Phys. Rev. E., Vol. 55, No. 5, pp. 6016-6023 (1997).
20. Kramer, S.L., Geotechnical Earthquake Engineering, Prentice-Hall, Inc., New Jersey (1996).
21. Marcuson, W.F., III, and Wahls, H.E., “Time Effects on Dynamic Shear Modulus of Clays,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 98, SM12, pp. 1359–1373 (1972).
22. Mitchell, J.K., Fundamentals of Soil Behavior, John Wiley & Sons, Inc., New York (1976).
23. Ni, S.H., Documentation of Resonant Column Test Program RCTEST, Soil Dynamics Laboratory, Department of Civil Engineering, National CHENG-KUNG University, 115p. (1992).
24. Novak, M., and Kim, T.C., “Resonant Column Technique for Dynamic Testing of Cohesive Soils,” Canada Geotechnical Journal, Vol. 18, pp. 448-455 (1981).
25. Ohsaki, Y., and Iwasaki, R., “Shear Moduli and Poisson’s Ratios of Soil Deposits,” Soil and Foundations (Japan), Vol. 13, No. 4, Dec., pp. 61-73 (1973).
26. Reddy, K.R., Saxena, S.K., and Woods, R.O., “Dynamic Moduli and Damping Ratio for Cemented Sands at Low Strains,” Canada Geotechnical Journal, Vol. 25, pp. 353-368 (1988).
27. Richart, F.E., Hall, J.R., and Woods, R.D., Vibrations of Soils and Foundations, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 414p. (1970).
28. Richter, S., and Huber, G., “Time-Dependent Behavior of Fine-Grained Model Material in Resonant Column Experiments,” Granular Matter, Vol. 4, No. 6, Dec., pp. 195-206 (2004).
29. Rosato, A.D., Lan, Y., and Wang, D.T., “Vibratory Particle Size Sorting in Multi-Component Systems,” Powder Technol., Vol. 66, pp. 149-160 (1991).
30. Shibata, T., and Soelarno, D.S., “Stress Strain Characteristics of Sands Under Cyclic Loading,” Proc., Japanese Society of Civil Engineering, No. 239, pp. 57-65 (1975).
31. Silver, M.L., “Load Deformation and Strength Behavior of Soils under Dynamic Loading,” State-of-the-Art Paper, International Conference on Recent Advances in Geotechnical Earthquake and Soil Dynamics, St. Louis, Vol. 3, April, pp. 873-894 (1981).
32. Skoglund, G.R., Marcuson, W.F., III, and Cunny, R.W., “Evaluation of Resonant Column Dynamic Testing Devices,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No. GT11, pp. 1147-1158 (1976).
33. Stevens, H.W., “Suggested Method of Test for Some Viscoelastic Properties of Materials, Especially Frozen and Nonfrozen Soils, under Vibratory Loads,” Special Procedures for Testing Soil and Rock for Engineering Purposes, STP 479, June, pp. 530-546(1970).