| 研究生: |
徐慶鐘 Hsu, Ching-Chung |
|---|---|
| 論文名稱: |
音圈馬達之出力控制系統之研究 Development of the force control system for a coil motor |
| 指導教授: |
謝成
Hsieh, Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 比例積分控制器 、順滑模態控制器 、出力控制 |
| 外文關鍵詞: | force control, PI controller, sliding mode controller |
| 相關次數: | 點閱:186 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於出力設備廣泛地應用在工業上,因此有不少人針對出力控制進行研究,但在這些出力控制的研究中,受力的目標物都是靜止不動的。而本論文的目的即在於建立一套出力控制系統,使得受力的目標物不論是處於靜止或運動狀態中,都能得到所需的受力。
在本文中,以音圈馬達作為出力裝置,此音圈馬達的永久磁鐵為定子,纏繞線圈的部分為動子,其優點在於使用單一永久磁鐵,沒有磁鐵排列組合時所造成的磁場變化,故可減少控制出力時的干擾源。在感測器方面,使用光學尺量測音圈馬達的動子的位移,荷重元量測出力系統的出力。在此研究中,先藉由分析出力系統的運動行為,建立出力系統的數學模型,然後針對此模型設計五種控制器來比較其性能。第一種控制器是對出力誤差用比例積分控制器 (PI controller)。第二種控制器也是對出力誤差用比例積分控制器 (PI controller),但針對目標物的運動情形提供額外的補償電壓。第三種控制器是採用將摩擦力視為不確定的順滑模態控制器 (sliding mode controller),但控制律改用飽和函數形式。第四種控制器是採用將摩擦力視為不確定的高階順滑模態控制器 (higher order sliding mode controller)。第五種控制器則是採用將摩擦力、加速度及加速度的微分值均視為不確定的高階順滑模態控制器 (higher order sliding mode controller)。
第二種控制器,也就是對出力誤差用比例積分控制器 (PI controller) 並針對目標物的運動情形提供額外的補償電壓,因為速度及加速度是由量得的位置進行差分得來的,而量得的位置因為數位化的關係,本身已有誤差,因此無法準確的獲得速度及加速度,也就無法準確的提供補償電壓,使得補償電壓無法發揮其功能。第三種控制器,即將摩擦力視為不確定的順滑模態控制器 (sliding mode controller),因為使用飽和函數的關係,即使是施固定力給固定的目標物,仍有出力誤差。第四種控制器,即將摩擦力視為不確定的高階順滑模態控制器 (higher order sliding mode controller),因量得的位置受到數位化的影響,產生誤差,使得將量得位置進行差分所得到的加速度及加速度的微分值也產生誤差,而輸入的電壓又和加速度及加速度的微分值有關,因此其性能並不理想。第五種控制器,即將摩擦力、加速度及加速度的微分值視為不確定的高階順滑模態控制器 (higher order sliding mode controller),因為將加速度及加速度的微分值視為不確定,避免因數位化所產生的影響,使得其性能較第四種控制器好。
藉由觀察實驗結果,可發現最簡單的比例積分控制器 (PI controller) 是這五種控制器中,性能最好的,除了在目標物運動方向改變時有較大的出力誤差,其於時候的出力誤差都保持在 0.2 N 以內。
Because the force apply equipments are widely used in the industry, there are many researches of the force control. In those researches of the force control, the object of force applied is fixed. The purpose of this research is to develop a force control system that can give a constant force to the object no matter the object is fixed or moving.
In this research, we use the coil motor as the force apply equipment. The stator of this coil motor is a permanent magnet and the rotor of this coil motor is the coil. Because the coil motor has only a permanent magnet, the magnetic field is unique. So the noise sources of the force control can be reduced. By analysis the properties of the force control system, we establish the mathematical model. Then we design five kind controllers and compare the performance. The first kind controller is a PI controller. The second kind controller is a PI controller with compensatory voltage. The compensatory voltage is used to cancel the effect of the motion state of the object. The third kind controller is a sliding mode controller that the friction force is uncertainty. The fourth kind controller is a high order sliding mode controller that the friction force is uncertainty. The fifth kind controller is a high order sliding mode controller that the friction force, acceleration and the differential of the acceleration are uncertainty.
By theoretical analysis, the second controller, a PI controller with compensatory voltage for the motion state of the object, should have the best performance. Because the distance of measured is digital, the velocity and acceleration that get by difference the distance of measured have error. Then the compensatory voltage can not provide the correct voltage. So the performance of this kind controller is not the best.
By observe the results of these experiments, we can find that the performance of PI controller is the best. The errors of the apply force are less then 0.2 N beside the moving direction of the object is changed.
[1] Shozaburo Kasai and Fumitoshi Matsuno, “Force Control of One-Link Flexible Arms mounted on a Linear Motor with PD and Shear Force (PDSF) Feedback”, IECON, 26th Annual Conference of the IEEE, Vol. 1, p.p. 195-200, 2000.
[2] J. Lin, “Hierarchical Fuzzy Logic Controller for a Flexible Link Robot Arm Performing Constrained Motion Tasks”, IEE Proceedings Control Theory and Applications, Vol. 150, p.p. 355-364, 2003.
[3] Jeang-Lin Chang and Yon-Ping Chen, “Force Control of a Single-Link Flexible Arm Using Sliding-Mode Theory”, Journal of Vibration and Control, Vol. 4, No. 2, pp. 187-200,1998.
[4] Youshifumi Morita, Fumitoshi Matsuno, Takao Kanzawa and Hiroyuki Ukai, “Robust Force Control of a Flexible Arm with a Nonsymmetric Rigid Tip Body”, Journal of Robotic Systems, Vol. 18, No. 5, pp. 221-235, 2001.
[5] 潘奕杰,“靜摩擦之研究與高精度定位控制”,博士論文,國立成功大學,航空太空工程研究所, 2000。