研究生: |
李柏慶 Lee, Po-Ching |
---|---|
論文名稱: |
以表面增顯紅外光譜儀分析蛋白質在固體基板表面吸附狀況之研究 The Study of Protein Adsorption on Solid Substrates by Surface Enhancement Infrared Spectroscopy |
指導教授: |
李玉郎
Lee, Yuh-Lang |
共同指導教授: |
吳昭燕
Wu, Jau-Yann |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 自組裝單分子層 、表面增顯紅外光譜儀 、牛血清白蛋白 、蛋白質二級結構 、無標記型 、免疫感測器 |
外文關鍵詞: | self-assembly monolayer, Surface-Enhanced Infrared Spectroscopy, Bovine serum albumin, protein secondary structure, label-free, immunosensor |
相關次數: | 點閱:175 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用表面增顯紅外光譜儀(Surface-Enhanced Infrared Spectroscopy, SEIRAS)結合循環伏安儀(Cyclic Voltammetry, CV),即時觀測牛血清白蛋白(Bovine serum albumin, BSA)在金電極表面的吸附行為,藉以探討六碳羧基(6-Mercaptohexanoic acid , 6-MHA)、六碳烷基(1-Hexanethiol, MCH)、六碳羥基(6-Mercapto-1-hexanol, 6-MCH)與兩碳氨基(Cysteamine , MEA),不同官能基硫醇修飾,與不同電位之金表面,對BSA的吸附影響,再以FTIR分析吸附於金表面之BSA的構型變化,推測其吸附情況。實驗結果顯示,其總吸附量排序為:6-MHA > MCH > 6-MCH > MEA,推測為帶負電的羧基基團會吸引BSA分子的吸附。接著利用循環伏安儀使金表面帶有不同的電位,結果在施加負電位時的總吸附量會高於施加正電位的情況。以FTIR分析BSA之二級結構,在溶液中的構型以α-helix為主,而吸附於金表面時會轉變為β-sheet為主,但當BSA吸附量增加形成多層吸附層時,分子的構型以α-helix為主。
在實驗的另一部分使用6-MHA修飾金電極後,以抗體(Anti-HDGF)與抗原(HDGF)組裝成無標記型免疫生醫感測器,在抗原濃度為0.5~4 ng/c.c時,其誤差值約為 2.5~4.4% (n=5)。將檢測下限降低到0.125 ng/c.c時,檢量線以0.5 ng/c.c為轉折點,在0.125~0.5 ng/c.c的區間,電流密度與抗原濃度成正比,而在0.5~4 ng/c.c的區間則成反比。以FTIR分析抗原之構型,發現隨著抗原濃度的增加,β-sheet與α-helix之比例逐漸相近,當抗原濃度高於轉折點0.5 ng/c.c時,兩者之比例則越差越大。
In this study, surface-enhanced infrared spectroscopy (SEIRAS) combined with cyclic voltammetry (CV), was utilized to in-situ observe the adsorption behavior of Bovine serum albumin (BSA) on 6-Mercaptohexanoic acid (6-MHA), 1-Hexanethiol (MCH), 6-Mercapto-1-hexanol (6-MCH) and Cysteamine (MEA), different functional groups of the thiol modified gold, and different applying potential on gold surface. Using FTIR to analysis the conformation change of BSA which adsorbed to pure gold surface, and suggest it adsorption condition. The experimental results show that when different functional group modified gold surface, the order of total amount of adsorption is 6-MHA > MCH > 6-MCH > MEA, presume that negatively functional group would increase the amount of adsorption. Following, using CV to applying different potential on gold surface, the total amount of adsorption of applying negative potential is higher than applying positive potential. Using FTIR to analysis the conformation of BSA, in solution results is α-helix primarily, and it would convert to β-sheet primarily when adsorbed to gold surface, when the BSA gradually formed multilayer on the gold surface, the molecular is α-helix primarily.
At another part of experiment, we use 6-MHA to modified gold electrode, and use antibody (Anti-HDGF) and antigen (HDGF), assembled into label-free immunosensor, the deviation value is about 2.5~4.8 % (n=5) within the antigen range of 0.5~4 ng/c.c. As increasing the detect limit to 0.125 ng/c.c, the calibration curve with turning point is 0.5 ng/c.c, at 0.125~0.5ng/c.c region, the current density and antigen concentration are in direct proportion, and at 0.5~4 ng/c.c region, the current density and antigen concentration are in inverse proportion. Using FTIR to analysis the antigen conformation, as the antigen concentration increase, the ratio of β-sheet and α-helix is gradually close, when the antigen concentration is higher than the turning point of 0.5 ng/c.c, the difference of the ratio is more large.
1. W. C. Bigelow, D. L. Pickett, W. A. Zisman, “Oleophobic Monolayers : I. Films Adsorbed From Solution in Non-polar Liquids”, Journal of Colloid Science, vol. 1, 513, 1946.
2. H. Kuhn, A. Ulman, “Thin Films”, Academic Press, New York, 1995.
3. R. G. Nuzzo, D. L. Allara, “Adsorption of Bifunctional Organic Disulfides on Gold Surfaces”, Journal of the American Chemical Society, vol. 105, 4481, 1983.
4. H. Sellers, A. Ulman, Y. Shnidman, J. E. Eilerss, “Structure and Binding of Alkanethiolates on Gold and Silver Surfaces: Implications for Self-Assembled Monolayers”, Journal of the American Chemical Society, vol. 115, 9389, 1993.
5. A. Ulman, “Formation and Structure of Self-Assembled Monolayers”, Chemical Reviews, vol. 96, 1533, 1996.
6. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, “Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology”, Chemical Reviews, vol. 105, 1103, 2005.
7. G. Yang, G. Liu, “New Insights for Self-Assembled Monolayers of Organothiols on Au(111) Revealed by Scanning Tunneling Microscopy”, The Journal of Physical Chemistry B, vol. 107, 8746, 2003.
8. H. A. Biebuyck, G. M. Whitesides, "Interchange between Monolayers on Gold Formed from Unsymmetrical Disulfides and Solutions of Thiols: Evidence for Sulfur-Sulfur Bond Cleavage by Gold Metal'", Langmuir, vol. 9, 1766, 1993.
9. H. A. Biebuyck, C. D. Bain, G. M. Whitesides, "Comparison of Organic Monolayers on Polycrystalline Gold Spontaneously Assembled from Solutions Containing Dialkyl Disulfides or Alkanethiols", Langmuir, vol. 10, 1825, 1994.
10. A. Ulman, “Formation and structure of self-assembled monolayers”, Chemical reviews, vol. 96, 1533, 1996.
11. G. Georgiou, E. D. Bernardez-Clerk, “Protein Refolding,” Journal of the American Chemical Society, vol. 6, 1, 1991.
12. Lehninger, A. L., Nelson, D. L., Cox, M. M. “Principles of Biochemistry,” Second Edition, 1993.
13. Nystrom, M., Aimar, P., Luque, S., Kulovaara, M., Metsamuuronen, S. “Fractionation of model proteins using their physiochemical properties”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 138, 185, 1998.
14. S. Era, H. Ashida, S. Nagaoka, H. Inouye, M. Sogami, “CD-resolved secondary structure of bovine plasma albumin in acid-induced isomerization”, International Journal of Peptide and Protein Research, vol. 22, 333, 1983.
15. M.Y. Khan, “Direct evidence for the involvement of domain III in the NF transition of bovine serum albumin”, Biochemical Journal , vol. 236, 307, 1986.
16. S. Era, K.B. Itoh, M. Sogami, K. Kuwata, T. Iwama, H. Yamada, H.W. Atari, “Structural transition of bovine plasma albumin in the alkaline region the N-B transition”, International Journal of Peptide and Protein Research, vol. 35, 1, 1990.
17. M. Dockal, D.C. Carter, F. Rüker, “Conformational transitions of the three recombinant domains of human serum albumin depending on pH”, Journal of Biological Chemistry, vol. 275, 3042, 2000.
18. J.M. Lee, H.H.L. Edwards, C.A. Pereira, S.I. Samii, “Crosslinking of tissue-derived biomaterials in 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)”, Journal of Materials Science: Materials in Medicine, vol. 7, 531, 1996.
19. L.H.H.O. Damink, P.J. Dijkstra, M.J.A.V. Luyn, P.B. Wachem, P.V. Nieuwenhuis, J. Feijen, “Cross-linking of dermal sheep collagen using a water-soluble carbodiimide, Biomaterials”, vol. 17, 765, 1996.
20. Chen, X., Yun, J., Fei, F., Yi, J., Tian, R., Li, S., Gan, X., “Prognostic value of nuclear hepatoma-derived growth factor (HDGF) localization in patients with breast cancer”, Pathology research and practice, vol. 208, 437, 2012.
21. Ren, H., Chu, Z., Mao, L., “Antibodies targeting hepatoma-derived growth factor as a novel strategy in treating lung cancer”, Molecular cancer therapeutics, vol. 8, 1106, 2009.
22. Wang, C.H., Davamani, F., Sue, S.C., Lee, S.C., Wu, P.L., Tang, F.M., Shih, C., Huang, T.H., Wu, W.G., “Cell surface heparan sulfates mediate internalization of the PWWP/HATH domain of HDGF via macropinocytosis to fine-tune cell signalling processes involved in fibroblast cell migration”, The Biochemical journal, vol. 433, 127, 2011.
23. Zhao, J., Yu, H., Lin, L., Tu, J., Cai, L., Chen, Y., Zhong, F., Lin, C., He, F., Yang, P., ”Interactome study suggests multiple cellular functions of hepatoma-derived growth factor (HDGF)”, Journal of proteomics, vol. 75, 588, 2011.
24. Lin, Y.W., Li, C.F., Chen, H.Y., Yen, C.Y., Lin, L.C., Huang, C.C., Huang, H.Y., Wu, P.C., Chen, C.H., Chen, S.C., Tai, M.H., “The expression and prognostic significance of hepatoma-derived growth factor in oral cancer”, Oral oncology, vol. 48, 629, 2012.
25. Kao, Y.-H., Chen, C.-L., Jawan, B., Chung, Y.-H., Sun, C.-K., Kuo, S.-M., Hu, T.-H., Lin, Y.-C., Chan, H.-H., Cheng, K.-H., Wu, D.-C., Goto, S., Cheng, Y.-F., Chao, D., Tai1, M.-H., “Upregulation of hepatoma-derived growth factor is involved in murine hepatic fibrogenesis” Hepatology, vol. 52, 96, 2010.
26. Hsu, S.S., Chen, C.H., Liu, G.S., Tai, M.H., Wang, J.S., Wu, J.C., Kung, M.L., Chan, E.C., Liu, L.F., “Tumorigenesis and prognostic role of hepatoma-derived growth factor in human gliomas”, Journal of neuro-oncology, vol. 107, 101, 2012.
27. Zhang, A., Long, W., Guo, Z., Liu, G., Hu, Z., Huang, Y., Li, Y., Grabinski, T.M., Yang, J., Zhao, P.X., Everett, A.D., Zhang, Y., Cao, B.B., “Development and clinical evaluation of a multi-purpose mAb and a sandwich ELISA test for hepatoma-derived growth factor in lung cancer patients”, Journal of immunological methods, vol. 355, 61, 2010.
28. 林志生, 蔡明蒔, 潘俊旭, 孫玉苓, 王瑞萍, 黃元平, 張豐鵬, “微奈米生物感測系統專利地圖及分析”, 國家實驗研究院科技政策研究與資訊中心, 2005.
29. 林良憲, “利用奈米碳管與電化學預處理修飾網版印刷碳電極選擇性偵測尿酸之研究”, 國立中山大學化學研究所碩士論文, 2010.
30. Tn Lien, T., Xuan Viet, N., Chikae, M., “Development of Label-Free Impedimetric hCG-Immunosensor Using Screen-Printed Electrode”, Biosensors & bioelectronics, vol. 02, 2011.
31. Asadollahi-Baboli, M., Mani-Varnosfaderani, A., “Rapid and simultaneous determination of tetracycline and cefixime antibiotics by mean of gold nanoparticles-screen printed gold electrode and chemometrics tools”, Measurement, vol. 47, 145, 2014.
32. GB Wisdom, “Enzyme-immunoassay”, Clinical Chemistry, vol. 22, 1243, 1976.
33. B. Lu, E. I. Iwuoha, M. R. Smyth, R. O’Kennedy, “Development of the determination of biotin based on a non-diffusional redox osmium polymer film containing an antibody to the enzyme label horseradish peroxidase”, Analytica Chimica Acta, vol. 345, 59, 1997.
34. J. Wang, B. Tian, “Thick-film electrochemical immunosensor based on stripping potentiometric detection of a metalion label”, Analytical Chemistry, vol. 70, 1682, 1998.
35. C. Valat, B. Limoges, D. Huet, J. L. Romette, “A disposable protein A-based immunosensor for flow-injection assay with electrochemical detection”, Analytica Chimica Acta, vol. 404, 187, 2000.
36. M. Osawa, “Surface-Enhanced Infrared Absorption”, Topics in Applied Physics, vol. 81, 163, 2001.
37. A. Bewick, K. Kunimatsu, B. S. Pons, J. W. Russell, “Electrochemically Modulated Infrared Spectroscopy(EMIRS)”, Journal of Electroanalytical Chemistry, vol. 160, 47, 1984.
38. S. Pons, T. Davidson, “Vibrational Spectroscopy Of The Electrode-Electrolyte Interface Part IV. Fourier Transform Infrared Spectroscopy: Experimental Considerations”, Journal of Electroanalytical Chemistry, vol. 160, 63, 1984.
39. T. I. S. Ye, K. Uosaki, “Spectroscopic Studies on Electroless Deposition of Copper on a Hydrogen-Terminated Si(111) Surface in Fluoride Solutions”, Journal of Electroanalytical Chemistry, vol. 148, C421, 2001.
40. H. Miyake, S. Ye, M. Osawa, “Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry”, Electrochemistry Communications, vol. 4, 973, 2002.
41. M. Osawa, K. Ataka, K. Yoshii, T. Yotsuyanagi, “Surface-enhanced infrared ATR spectroscopy for in situ studies of electrode/electrolyte interfaces”, Journal of Electron Spectroscopy and Related Phenomena, vol. 64, 371, 1993.
42. M. Osawa, K. Ataka, K. Yoshii, T. Yotsuyanagi, Y.Nishikawa, “Surface-Enhanced Infrared Spectroscopy: The Origin of the Absorption Enhancement and Band Selection Rule in the Infrared Spectra of Molecules Adsorbed on Fine Metal Particles”, Society for Applied Spectroscopy, vol. 47, 1497, 1993.
43. J. C. Vickerman, “"Surface Analysis-The Principle Techniques”, John Wiley & Sons, New York, 278, 1997.
44. L. A. Nagahara, T. Ohmori, K. Hashimoto, A. Fujishima, "Effects Of Hf Solution In The Electroless Deposition Process On Silicon Surfaces", J. Vac. Sci. Technol. 11, 763, 1993.
45. 白志虹, “毛細管電泳電化學偵測法使用金汞膜微電極分析三有機錫化合物之研究”, 國立中山大學化學研究所碩士論文, 2001.
46. P. Bourassa, I. Hasni, H.A. Tajmir-Riahi, “Folic acid complexes with human and bovine serum albumins”, Food Chemistry, vol. 129, 1148, 2011.
47. David Charbonneau, Marc Beauregard, and Heidar-Ali Tajmir-Riahi ” Structural Analysis of Human Serum Albumin Complexes with Cationic Lipids”, The Journal of Physical Chemistry B, vol. 113, 1777, 2009.
48. A. Seehuber and R. Dahint ”Conformation and Activity of Glucose Oxidase on Homogeneously Coated and Nanostructured Surfaces”, The Journal of Physical Chemistry B, vol. 117, 6980, 2013,
49. Ke-Hsuan Wang, Mei-Jywan Syu, Chien-Hsiang Chang, Yuh-Lang Lee “Immobilization of glucose oxidase by Langmuir–Blodgett technique for fabrication of glucose biosensors: Headgroup effects of template monolayers”, Sensors and Actuators B, vol. 164, 29, 2012.