簡易檢索 / 詳目顯示

研究生: 陳俊仁
Chen, Chun-Jen
論文名稱: 銀修飾奈米二氧化鈦增強可見光吸收度之研究
Studies on the Silver Modified TiO2 Nanoparticles for Enhancing Absorption of Visible Light
指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系碩士在職專班
Department of Chemistry (on the job class)
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 83
中文關鍵詞: 二氧化鈦光觸媒
外文關鍵詞: Titanium Dioxide, photocatalyst
相關次數: 點閱:209下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    二氧化鈦光觸媒具有光催化、無毒及化學穩定度高的特性,且是一種極為傑出的環保的光觸媒材料。

    銀於文獻上的報載具有抑菌及殺菌的功能。本研究的目的在於使用銀修飾奈米二氧化鈦光觸媒,使其於可見光光譜有吸收峰。與其他文獻報載較不同處乃在於本研究利用Nd–YAG雷射為二氧化鈦光觸媒之激發源,並配合光降解實驗來探討銀修飾奈米二氧化鈦的結果。

    由最後的結果得知以Nano Ag 2.0 wt % : TiO2 98.0 wt % 與 AgNO3 2.0 wt % : TiO2 98.0 wt % 之比例修飾奈米二氧化鈦光觸媒在可見光光譜區(380~780 nm)不僅有明顯的吸收峰,在光催化特性上亦明顯較未改質的奈米二氧化鈦光觸媒有較出色的表現。

    Abstract

    Titanium Dioxide photocatalyst has the characteristics of photo- catalysis, non toxicity and high stability of chemistry. It is also an outstanding photocatalyst material of environmental protection.

    According to the literature, silver has the function of bacteriostasis and disinfection. Thus, the purpose of this study is to use silver to modify nanometer Titanium Dioxide photocatalyst and to make it reach a absorbing peak under visible light spectrum. This study is very different from the records of other literature because this study adopts Nd-YAG laser to be the energy of titanium dioxide photocatalyst and combine photodegradation experiment to investigate the result of nanometer Titanium Dioxide.

    The results of the study showed that nanometer Titanium Dioxide photocatalyst, which is modified by the proportion of Nano Ag 2.0 wt % : TiO2 98.0 wt % and AgNO3 2.0 wt % : TiO2 98.0 wt %, has not only an obvious absorbing peak under visible light spectrum, but also a better result in photocatalysis compared with the original Titanium Dioxide photocatalyst.

    目錄 中文摘要……………………………………………………I 英文摘要……………………………………………………II 目錄…………………………………………………………III 圖目錄………………………………………………………VI 表目錄………………………………………………………IX 第一章 緒論…………………………………………………1 1.1前言………………………………………………………1 1.2研究目的與內容…… ………………………………….3 第二章 理論與文獻回顧……………………………………5 2.1光觸媒簡介………………………………………………5 2.2二氧化鈦光觸媒…………………………………………7 2.2.1二氧化鈦的作用………………………………………9 2.2.2二氧化鈦的結構與特性………………………………9 2.2.3二氧化鈦的效果………………………………………12 2.3光觸媒反應機制…………………………………………12 2.4光催化性…………………………………………………15 2.5奈米粒子製備方法………………………………………17 2.6二氧化鈦光觸媒製備法…………………………………23 第三章 實驗…………………………………………………24 3.1實驗藥品…………………………………………………24 3.2實驗儀器…………………………………………………25 3.3光觸媒的特性分析………………………………………26 3.3.1紫外光-可見光光譜儀……………………………….26 3.3.2 X-ray繞射光譜儀……………………………………27 3.3.3穿透式電子顯微鏡……………………………………29 3.3.4掃描式電子顯微鏡……………………………………33 3.3.5 X射線能量散佈分析儀………………………………35 3.4實驗流程圖………………………………………………37 3.5實驗步驟…………………………………………………38 第四章 結果與討論…………………………………………42 4.1Ag修飾TiO2於可見光光譜之探討………………………42 4.2Ag修飾TiO2利用XRD於粉體結構之探討…………………44 4.3利用SEM/EDS觀察TiO2粉體粒徑大小及化學成份之探討50 4.4利用TEM觀察TiO2粉體表面型態之探討………………57 4.5光降解效率的探討……………………………………64 4.5.1 Nano Ag / TiO2對甲基藍降解的探討……………64 4.5.2 AgNO3 / TiO2對甲基藍降解的探討………………65 4.6 光降解背景實驗………………………………………67 4.6.1 甲基藍直接光降解實驗……………………………67 4.6.2 光觸媒吸附實驗……………………………………68 第五章 結論與展望………………………………………69 5.1結論……………………………………………………69 5.2未來展望………………………………………………70 參考文獻………………………………………………….71 附錄…………………………………………………………75

    參考文獻

    1.A. Fujishima, K. Hashimoto and T. Watanabe, TiO2 Photocatalysis : Fundamentals and Application, BKC, Tokyo, 235(1999).
    2.http://www.bnext.com.tw/mag/1999_08/1999_08_184.html
    3.張志誠,奈米技術,全面報到,就業情報,319, 43(2002).
    4.A. Fujishima, K. Honda, Nature, 238, 37 (1972).
    5.H. M. Sung-Suh, J. R. Choi, H. J. Hah, S. M. Koo, and Y. C. Bae, J. Photochem. Photobiol. A: Chem. 163,37(2004).
    6.S. M. Modak and C. L. J. Fox, Biochem Pharamacol. 22, 2371 (1973).
    7.T. J. Berger, J. A. Spadaro, S. E. Chapin, and R. O Becker, Agents
    Chemother. 9, 357 (1976).
    8.M. M. Kondo and W. F. Jardim, Wat. Res. 25, 823 (1991).
    9.A. Sclafani, M. N. Mozzanega, and P. Pichat, J. Photochem. Photobiol. A: Chem. 59, 181 (1991).
    10.J. M. Herrmann, H. Tahiri, Y. Ait-Ichon, G. Lassaletta, A. ( Gonzalez Elipe, and A. Femandez, App. Catal. B: Environ. 13, 219 (1997).
    11.M. Lal and V. Chhabra, J.Mater. Res. 13, 1249 (1998).
    12.A. Fujishima, T. N. Rao, and D. A. Tryk, J. Photochem. Photobiol. C:Photochem. Rev. 1, 1-21(2000).
    13.A. Hagfeldt and M. Gratzel, Chem. Rev. 95, 735 (1995).
    14.M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rav. 95, 69-96(1995).
    15.J. K. Budett, T. Hughbanks, G. J. Miller, and J. W. Richardson, J. Am. Chem .Soc. 109, 3639 (1987).
    16.G. Binnig and H. Rohrer, In Touch with Atoms. 71, S324 (1999).
    17.M. Tadashi, Applied and Environmental microbiology. 1330 (1988).
    18. A. Fujishime, K. Hashimoto and T. Watanabe, BKC, Tokyo (1999).
    19.P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Dig, B. Gotsmann, W. Herle, M. A. Lantz. H. E. Rothuizen, R. Stutz, and G. Binnig,
    The“Millipede”-Nanotechnology Entering Data Storage. 1(1), 39 (2002).
    20. S. T. Purcell, P. Vincent, C., Journet, and Vu T. Binh, Physical Review Letter. 11 (2002).
    21.A. J. Bard and L. R. Faulker, Electrochemical Methods Fundamentals and Application, John Wiley & Sons, New York (1980).
    22. H. Arnim, Chem. Ren. 89, 1861 (1989).
    23. A. J. Bard, H. Science. 207, 139 (1980).
    24. A. Sclafani and J. M. Herrmann, J. Photochem. Photobiol. A 113, 181 (1998).
    25.A. Word, Chem. Master. 5, 280 (1993).
    26.V. Subramanian, E. Wolf, and P. Kamat, J. Phys. Chem. B 105, 11439 (2001).
    27.C. Y. Wang, C. Y. Liu, X. Zheng, J. Chen, and T. Shen, Colloid. Surf. A. 131, 271 (1998).
    28.A. L. Linsebigler, G. Lu, and J. Yates, Chem. Rev. 95, 735 (1995).
    29.K. Hirano, H. Asayama, A. Hoshino, and H. Wakatsuki, J. Photochem. Photobiol. A. 110, 307 (1997).
    30.A. Sclafani and J.M. Herrmann, J. Photochem. Photobiol. A. 113, 181 (1998).
    31.J. N. Chen, Y.C. Chan and M.C. Lu, Wat. Sci. Tech. 39, 225 (1999).
    32.H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smally, Nature, 318, 162 (1985).
    33.牟中原 物理雙月刊 二十三卷六期,67 (1999).
    34. A. M. Morales, C. M. Lieber, Science, 279, 208 (1998).
    35.T. Guo, P. Nikolaev, A. Thress, D. T. Colbert, and R. E. Smalley, Chem. Phys.Lett. 243, 49 (1995).
    36. A. Fojik, A. Henglein and B. Bunsenges, Phys. Chem. 97, 1993 (252).
    37. J. Neddersen, G. Chumanov, T. M. Cotton, Appl. Spectrosc. 47, 1993 (1959).
    38. J. S. Jeon and C. S. Yeh, J. Chin. Chem. Soc. 45, 721 (1998).
    39. (a) Y. H. Yeh, M. S. Yeh, Y. P. Lee, and C. S. Yeh, Chem. Lett. 1183 (1998).
    (b) M. S. Yeh,Y. S. Yang, Y. P. Lee, H. F. Lee. Y. H.Yeh, and C. S. Yeh, J. Phys. Chem. B, 103, 6851 (1999).
    40.F. Mafune, J. Y. Kohno, Y. Takeda, T.Kondow, and H. Sawabe, J. Phys
    Chem.B, 104, 9111 (2000).
    41.W. Hoheisel, U. Schulte, M.Vollmer, and F. Trager, Appl. phys. A51, 271 (1990).
    42.A. Henglein, J. Phys Chem. 97, 5457 (1993).
    43.T. M. Cotton, John Neddersen and George Choumanov, Appl.
    Spectrosc. 47, 1959 (1993).
    44.Y. Ta keuchi, T. Ida, and K. Kimura, J. Phys. Chem. B. 101, 1322(1997).
    45.Y. Murakami, T. Matsumoto and Y. Takasu, J. Phy. Chem. B. 103, 1836 (1999).
    46.呂宗昕,圖解奈米科技與光觸媒。商周出版,148 (2003).
    47.丁勝懋,雷射工程導論,第四版。中央出版社出版,243(1995).
    48.W. D. Callister Jr., Materials Science and Engineering, An introduction, John Wiley & Sons, New York. 54 (1994).
    49. D. B. Willams and C. B. Carter, Plenum Press New York. 11 (1996).
    50. J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig, Jr, C. E. Lymen, C. Fiori and E. Lifshin, Wiley. London. 69 (1992).
    51. D. E. Newbury, D. C. Joy, P. Echlin, C. Fiori and J. I. Goldstein, Plenum. Press. New York. 211 (1986).
    52.楊哲人,儀器總覽材料分析儀器,國科會精密儀器發展中心出版
    53.張立德、牟季美,奈米材料和奈米結構。滄海書局,124 (2002).
    54. M. Anpo, Y. Ichihashi, M. Takeuchi, and H. Yamashita, Res. Chem. Interned. 24, 143 (1998).
    55. B. Ohtani, K. Iwai, Sei-ichi Nishimoto, and S. Sato, J. Phys. Chem. B. 101, 3349 (1997).
    56.R. S. Magliozzo and A.I. Krasna, J. Photochem. Photobiol. A: Chem. 38, 15(1983).
    57.T. Kawai and T. Sakata, J. C. S. Chem. Comm. 694, 23 (1980).
    58.S. Sato and J. M. White, Chem. Phy. Lett. 72, 83 (1980).
    59.K. Yamaguti and S. Sato, J. Chem. Soc. Faraday Trans. 81, 1237 (1985).
    60. K. Watanabe, K. Ichimura, and N. Inoue, Chem. Phy. Lett. 124, 196 (1986).
    61.Y. Sakata, T. Yamamoto, T. Okazaki, H. Imamuma, and S. Tsuchiya,
    Chem. Lett. 1253 (1998).

    下載圖示 校內:2008-08-31公開
    校外:2011-08-31公開
    QR CODE