| 研究生: |
鄭翔仁 Jen, Chen-hsiang |
|---|---|
| 論文名稱: |
附著於鈦電極的混合金屬氧化物製備與性質研究 Synthesis and Electrical Properties of Mixed Metal Oxides Coated on Titanium Anode |
| 指導教授: |
高振豐
Kao, Chen-feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 外加電流法 、化學共沉法 |
| 外文關鍵詞: | chemical coprecipitation, impressed current technique |
| 相關次數: | 點閱:98 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以固態合成法製備不同比例的混和金屬氧化物,測其電阻係數,以此根據,再以化學共沉法製備不同比例的鑭鎳氧化物、鈷鎳氧化物、銦錫氧化物陶瓷粉末,此乃由於化學共沉法具有高均勻性、高反應性、高品質及精確的化學計量比。並對合成粉末做一連串的性質分析及電、磁性質測試。
以化學共沉法製得之前導物粉末先由TGA判斷其在空氣下加熱,使粉末完全反應成氧化物的溫度(預期之煆燒溫度)。再用XRD分析前導物於不同溫度與時間下煆燒之粉末晶相種類及成長情況,來決定最佳煆燒溫度。
煆燒後粉末以雷射粒徑分析儀測量粉體粒徑分佈情形,得知化學共沉法製備之氧化物粉末平均粒徑;以SEM觀察粉體外觀,判斷煆燒是否完全,也可約略估計出粒子大小。
煆燒後粉末再經由高於煆燒溫度100 ℃~200 ℃之溫度燒結4小時。以萬用電錶量其燒結體的直流電阻值,得其最低的電阻值,做為陰極防蝕法的陽極材料。
利用SQUID測量在固定外加磁場的環境下,各燒結體之磁化強度隨溫度之變化情形,判斷鑭鎳氧化物、鈷鎳氧化物和銦錫氧化物之粉體磁性。
將煆燒後的氧化物粉末作為陰極防蝕法的陽極材料,測其在固定電流密度下(0.01 Amp/cm2),隨時間的電壓變化,了解不同混和金屬氧化物的防腐效果。由實驗得知三種氧化物中,銦錫氧化物有較好的防蝕特性。
This study is to synthesize the powders of various stoichiometric ratios of mixed metal oxides by solid method and find the lowest electrical resistivity. Base on these data, synthesize the powders of various stoichiometric ratios of LaxNiyOz ,CoxNiyOz and InxSnyOz by solution methode.Because chemical coprecipitation has high homogeneity, high quality and exact stoichiometry. The characterization and electrical properties of the above compounds were investigated.
First, the precursors which were synthesized by chemical coprecipitation were analyzed with TGA. That the precursors were transferred to complex oxides compounds to know the probable calcined temperature. Then XRD were used to check the crystal type of precursors which calcined at various temperatures and times. Therefore, one could choose the best temperature for calcination.
The particle size distribution of the calcined products were measured
by LASER particle distribution machine. SEM could be used to investigate the surface appearance of powders.
The calcined products were sintered at the temperature 100 to 200 degree of centrifuge higher than calcination temperature for 4 hours. Digital multimeter was used to measure the electrical resistivity of the samples. The lowest electrical resistivity is as the anode material of cathodic protection method.
From the SQUID experiment, one could obtain the magnetic property of powder with various calcination temperature.
The mixed metal oxide powder which was coated on titanium plate is as an anode material. To measure the voltage changes with time during the constant current as the corrosion. The results show that In4Sn3O12 is the best anode material for cathodic protection .
參考文獻
【1】 賴耿陽 譯著;工業防蝕實務;復漢出版社有限公司;台南市;p.33
【2】 賴耿陽 譯著;工業防蝕實務;復漢出版社有限公司;台南市;p.83
【3】 賴耿陽 譯著;工業防蝕實務;復漢出版社有限公司;台南市;p.135
【4】 賴耿陽 譯著;工業防蝕實務;復漢出版社有限公司;台南市;p.62
【5】Roy Johnse;Cathodic Protection;Institute for Produktutvikling og Materialer
【6】I.Gurrappa ;Cathodic protection of cooling water systems and selection of appropriate materials;Journal of Materials Processing Technology;166;256-267;2005.
【7】E.W. Dreyman;Precious metal anode-state of the art ;Mater. Prot. Perform. ;20;17-23;1981.
【8】R. Babosian;Performance of Pt anode in impressed current cathodic protection.;16;20-25;1977
【9】賴耿陽 譯著;工業防蝕實務;復漢出版社有限公司;台南市;p.69-70
【10】A. Kumar, M.D. Armstrong;Cathodic protection using ceramic-coated anodes;Mater. Perform.;27;19-23;1988
【11】D. W. Johnson, Jr., “Nonconventional Powder Preparation Techniques”, Ceram. Bull., 60, 221-224, 1981.
【12】J.A. Dean, “Lange’s Handbook of Chemistry 15th ed.”, McGraw-Hill Company, Chap.8, 8.6-8.17, 1997.
【13】守吉佑介,植松敬三,伊熊泰郎;“Ceramics 燒結”;株式會社;p. 35-64。
【14】水恭惟谷,尾崎義治,木村敏夫;“工業陶瓷製程”;復漢出版社;台南市;p. 99-128。
【15】吳朗;“電子陶瓷介電”;全欣資料圖書;p. 43-125。
【16】Chikazumi Soshin; “Physics of Magnetism”; John Wiley and Sons,
37~109, 1985
【17】張昫,李學養 譯;“磁性物理學”;聯經出版事業公司;p. 3-15
【18】S. Chikazumi, Stanley H. Charap, “Physics of Magnetism”, John Wiley & Sons, 37-109, 1985.