簡易檢索 / 詳目顯示

研究生: 張勝博
Chang, Sheng-Po
論文名稱: 寬能隙半導體應用於光檢測與感測器
Photodetection and Sensor Applications Based on Wide Bandgap Semiconductors
指導教授: 莊文魁
Chuang, Ricky-Wenkuei
張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 145
中文關鍵詞: 光檢測寬能隙感測器
外文關鍵詞: Sensor, Photodetection, Wide Bandgap
相關次數: 點閱:123下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要為寬能隙半導體之特性研究與應用,其中可分為氮化鎵紫外光檢測器
    及氧化鋅材料系列元件。
    首先在氮化鎵紫外光檢測器方面,我們成功於矽基板上製作氮化鎵光檢測器,在
    入射波長365 nm 時,以鎢化鈦及鎳金屬製作之氮化鎵金半金型紫外光光檢測器的最
    大響應度分別為187 與 79.2 mA/W,而相對應之最大量子效率分別為64.7%與
    27.4%。在頻寬1kHz 和偏壓5V 下,進而推算出元件最低雜訊等效功率分別為
    1.525×10-12W 與5.119×10-12W , 而所對應之的正規化檢測度分別為
    1.313×1012cmHz0.5W-1 與3.914×1011 cmHz0.5W-1。另外,並發現在矽基板上之金半金型
    光檢測器的電流-電壓特性近似於普爾-法蘭克傳輸機制,這種現象歸因於微晶粒結構
    出現在矽基板上之磊晶層內,而矽基板上之氮化鎵金半金型光檢測器隨電壓變化的響
    應也證明了在磊晶層裡的微晶粒結構的存在。在低頻時,氮化鎵光檢測器之雜訊主要
    為1/ f 形式,此外,從矽基板上之氮化鎵金半金型光檢測器得到極低的β 值(~0.7)
    更是首次被發現。
    至於氧化鋅磊晶方面,利用分子束磊晶法成功將氧化鋅成長於矽基板上,並發現
    氧化鋅磊晶層表面形成奈米島狀結構,而其密度、平均直徑及平均高度分別為
    1.25×109 cm-2、300 nm、150 nm。就氧化鋅發光二極體方面,成功於藍寶石基板上製
    作出P 型氮化鎵與N 型氧化鋅之異質結構的二極體。藉由光激發頻譜與電致激光發
    頻譜得知,發光機制主要是來自於氮化鎵磊晶層之缺陷放射所造成。在氧化鋅光檢測
    器方面,在入射波長365nm 與施加電場500V/cm 時,以鎳金屬製作之氧化鋅光電導
    檢測器的最大響應度為54mA/W,而相對應之最大量子效率分別為2.8%,此時暫態
    響應的衰減時間常數為0.556ms。而光檢測器的低頻雜訊表現為1/ f 主導。在頻寬
    1kHz 和偏壓5V 下,進而推算出元件雜訊等效功率分別為1.83×10-6W,而所對應之
    的正規化檢測度為6.91×105cmHz0.5W-1。
    在氧化鋅奈米結構方面,利用濺鍍鋅薄膜與低溫氧化法來成長高密度氧化鋅奈米
    結構於玻璃基板上。從陰極發光頻譜得知,位於512nm 之發射頻譜主要由氧空缺所
    支配。並分別製作紫外光光檢測器與酒精氣體感測器。在紫外光光檢測器元件方面,
    發現暫態響應下降與上升衰減時間常數分別為3.9ms 與20.35ms。在酒精感測器方
    面,當固定酒精濃度為50 ppm 時,改變量測溫度為70°C、80°C、90°C 和100°C 時,
    響應分別為12%、21%、51%和72%。因此,當固定溫度於100°C 時,改變酒精濃度
    為10、20、50 和100 ppm 時,響應分別為42%、66%、71%和76%。
    最後,我們以氣相傳輸沉積法成功研製氧化鋅奈米碳管之酒精感測器。從穿透式
    電子顯微鏡的結構分析中,可以得知氧化鋅奈米碳管屬於多晶結構。而當固定酒精濃
    度為100 ppm 時,改變量測溫度為90°C、120°C、150°C、180°C 和230°C 時,響應分
    別為34%、76%、77%、77%和87%。因此,當固定溫度於230°C 時,改變酒精濃度
    為5、10、20、50 和100 ppm 時,響應分別為51%、61%、67%、80%和87%。

    The main goal of this dissertation is the fabrications and analyses of Wide Bandgap
    Semiconductors. Hence, the dissertation is divided into two parts, one is the investigation
    of nitride-based UV photodetectors, and the other is that of ZnO-based devices (UV
    photodetectors, LED, gas sensor). In the beginning of this dissertation, GaN ultraviolet
    MSM photodetectors electrodes grown on Si substrates were prepared. It was found that
    dark currents of PDs prepared on Si substrates were much smaller than that prepared on
    sapphire substrate. With an incident wavelength of 359 nm, it was found that the
    maximum responsivities for the GaN MSM photodetectors with TiW and Ni/Au contact
    electrodes were 0.187 and 0.0792A/W, which corresponds to quantum efficiencies of
    64.7 and 27.4%, respectively. For a given bandwidth of 1k Hz and a given bias of 5V, it
    was found that the corresponding noise equivalent power of our n--GaN MSM
    photodetectors with TiW and Ni/Au electrodes were 1.525×10−12 and 5.119×10−12W,
    respectively. Furthermore, it was found that the corresponding D* were 1.313×1012 and
    3.914×1011 cm Hz0.5W−1, respectively. Another, The conductive mechanism was
    suspected that the carriers need to penetrate the grain boundaries in silicon-substrate
    MSM PDs. This substrateinduced effect also caused the voltage-dependent responsivity
    and large fitting parameter, S0, for these GaN PDs prepared on the silicon substrate. The
    spectral noise density of siliconsubstrated PDs increased as SI~I3 at high current and as
    SI~I0.7 at low current. Such a low β value for PDs prepared on the silicon substrate was
    first mentioned and associated with the micro grains of the epitaxy layer.
    ZnO epitaxial layers was successfully grown on nitridated Si(100) substrate with
    double buffer layers by MBE. It was found that the HT-GaN buffer was crystalline with
    both hexagonal and cubic phases. It was also found that numerous cone-shaped
    nano-islands were formed on the ZnO epitaxial layers with density, average diameter and
    average height of 1.25×109 cm-2, 300 nm and 150 nm, respectively. In addition, the carrier
    depletion taking place in underlying GaN was responsible for a further decrease in electron
    concentration down to 1 × 1019 cm−3. For LED, we have detailed the growth, processing,
    and fabrication of an n-ZnO/p-GaN heterojunction light emitting diode on a c-Al2O3
    substrate, and characterized the electroluminescence from this device. By comparing PL
    and EL spectra, it is concluded that the deep-level defect-emission emerged mainly from
    the GaN epitaxial layer. For photoconductive sensors, we report the fabrication of ZnO
    photoconductive sensors epitaxially grown on sapphire substrates with interdigitated Ni/Au
    electrodes. With an incident light wavelength of 365 nm and an applied electric field of
    500 V/cm, it was found that maximum responsivity and quantum efficiency were
    respectively around 54 mA/W and 2.8 % while time constant of the decay transient was
    τ~0.556 ms. In addition, with a 5 V applied bias, it was found that NEP and normalized
    detectivity of the fabricated sensors were 1.83×10-6 W and 6.91x105 cmHz0.5W-1,
    respectively.
    On the other hand, high-density ZnO nanoflakes and nanowires were grown on glass
    substrates by the RF sputtering deposition of Zn particles and localization oxidation at low
    temperature 300°C. The as-grown ZnO nanoflakes and nanowires were polycrystalline and
    had nanometer dimensions. A wide green emission band centered at 512nm dominates the
    CL spectrum of the nanoflakes and nanowires, and is attributed to oxygen vacancies. The
    photocurrent-to-dark current contrast ratio of the ZnO photodetector herein was 5.2 while
    time constant were τf ~3.9ms and τr ~20.35ms. Another, the resistivity of the fabricated
    nanostructure sensor decreased upon injection of ethanol gas. Introducing 50ppm of
    ethanol gas yielded device sensitivities of approximately 12%, 21%, 51% and 72% when
    the gas sensor was operated at 70°C, 80°C, 90°C and 100°C, respectively. Furthermore, the
    device response measured at 100°C were around 42%, 66%, 71% and 76% when the
    concentration of injected ethanol gas was 10, 20, 50 and 100 ppm, respectively.
    Finally, We report the growth of ZnO nanotubes on patterned Au/Al2O3/Au/RuO2
    templates by reactive evaporation and the fabrication of ZnO nanotube ethanol gas sensor.
    It was found that the as-grown ZnO nanotubes were polycrystalline and with holes at
    terminals and on sidewalls. By introducing 100 ppm ethanol gas, it was found that the
    device sensitivities were around 34%, 76%, 77%, 77% and 87% when the gas sensor was
    operated at 90oC, 120oC, 150oC, 180oC and 230oC, respectively. Furthermore, it was found
    that the device responsivities measured at 230°C were around 51%, 61%, 67%, 80% and
    87% when the concentration of injected ethanol gas was 5, 10, 20, 50 and 100 ppm,
    respectively.

    Abstract (in Chinese) --------------------------------------------------------------- I Abstract (in English) -------------------------------------------------------------- III Acknowledgement ----------------------------------------------------------------- VI Contents ---------------------------------------------------------------------------- VII Table Captions ---------------------------------------------------------------------- X Figures Captions ------------------------------------------------------------------- XI CHAPTER 1 Introduction --------------------------------------------------------- 1 1-1 Background and Motivation ---------------------------------------------------------- 1 1-2 Organization of dissertation ---------------------------------------------------------- 2 CHAPTER 2 Experimental Equipment and Relevant Theory ------------- 7 2-1 Therory of photodetectors ------------------------------------------------------------ 7 2-2-1 Therory of MSM photodetectors ----------------------------------------------- 8 2.2-2 Electrostatic Discharge (ESD) tester ------------------------------------------- 9 2-2-3 Current-voltage ---------------------------------------------------------------- 9 2-2-4 Spectral response -------------------------------------------------------------- 9 2-2-5 Noise equivalent power ------------------------------------------------------- 11 2-2-6 Detectivity -------------------------------------------------------------------- 14 2-2 Theory concerning gas sensor based on ZnO nanostructure ------------------------- 14 2-3 Growth of nanostructure by vapor phase transport ---------------------------------- 16 2-4 Experimental details and analytic --------------------------------------------------- 16 2-4-1. Field-Emission Scanning Electron Sicroscope ------------------------------- 16 2-4-2. High resultion X-ray diffractometer ------------------------------------------ 17 2-4-3 Field Emission transmission electron microscopy ----------------------------- 17 2-4-4. Cathodoluminescence Spectroscopy ----------------------------------------- 18 CHAPTER 3 GaN Metal-Semiconductor-Metal Photodetector Prepared on Si Substrate ---------------------------------------------------------------------- 23 3-1 Fabrication GaN MSM UV photodetector Grown on Si Substrate -------------------24 3-2 Characteristics GaN MSM UV photodetector Grown on Si Substrate --------------- 24 3-3 The substrate-Induced Effect of GaN MSM Photodetectors on Silicon Substrate --- 27 3-4 Summary --------------------------------------------------------------------------- 32 CHAPTER 4 ZnO Epitaxial Layers Grown on Nitridated Si(100) Substrate with HT-GaN/LT-ZnO Double Buffer ---------------------------- 44 4-1 Growth of ZnO films grown on Si(100) substrate ----------------------------------- 45 4-2 Optical and physical properties of ZnO films grown on Si(100) substrate ---------- 47 4-3 Electrical properties of ZnO films grown on Si(100) substrate ---------------------- 50 4-4 Summary --------------------------------------------------------------------------- 52 CHAPTER 5 MBE N-ZnO/MOCVD P-GaN Heterojunction Light Emitting Diode ---------------------------------------------------------------------- 63 5-1. Fabrication of ZnO/GaN Heterojunction light emitting diodes ----------------------64 5-2. Analysis of Electrical properties ---------------------------------------------------- 65 5-3. Analysis of Raman spectra --------------------------------------------------------- 65 5-4. Analysis of Photoluminescence (PL) ----------------------------------------------- 66 5-5. Analysis of Electroluminescence (EL) --------------------------------------------- 66 5-6. Summary --------------------------------------------------------------------------- 67 CHAPTER 6 Fabrication and Characteristics of ZnO photoconductive sensors -------------------------------------------------------------------------------- 74 6-1. Fabrication and Analysis of ZnO photoconductive sensors ------------------------- 75 6-2. Analysis of Electrical properties --------------------------------------------------- 76 6-3. Analysis of Transient Response ---------------------------------------------------- 78 6-4. Analysis of Responsivity ----------------------------------------------------------- 79 6-5. Analysis of Low Frequency Noise ------------------------------------------------- 80 6-6. Summary --------------------------------------------------------------------------- 82 CHAPTER 7 Preparation of ZnO Nanostructure-Based Photodetector and Gas Sensor by Localized Oxidation at Low Temperature ----------- 93 7-1 Fabrication of ZnO Nanoflakes and Nanowire by Localized Oxidation at Low Temperature ---------------------------------------------------------------------------- 94 7-2 Analysis of ZnO Nanoflakes and Nanowire ----------------------------------------- 95 7-3 Fabrication of ZnO Nanostructure-Based Photodetector ---------------------------- 96 7-4 Fabrication of Gas Sensor with ZnO Nanostructure --------------------------------- 98 7-5 Summary -------------------------------------------------------------------------- 102 CHAPTER 8 ZnO Nanotube Ethanol Gas Sensor ------------------------- 114 8-1 Fabrication of ZnO Nanotube ----------------------------------------------------- 115 8-2 Analysis of ZnO Nanotube -------------------------------------------------------- 117 8-3 ZnO nanotube ethanol gas sensor -------------------------------------------------- 118 8-4 Summary -------------------------------------------------------------------------- 120 CHAPTER 9 Conclusion and Future Work --------------------------------- 127 9-1 Conclusion ------------------------------------------------------------------------ 127 9-2 Future Work ----------------------------------------------------------------------- 130

    CH1
    [1] Y. Irokawa, J. Kim, F. Ren, K. H. Baik, B. P. Gila, C. R. Abernathy, S. J. Pearton, C. C. Pan, G. T. Chen, and J. I. Chyi, Appl. Phys. Lett. 83, 4987 (2003)
    [2] J. K. Sheu, M. L. Lee, L. S. Yeh, C. J. Kao, C. J. Tun, M. G. Chen, G. C. Chi, S. J. Chang, Y. K. Su, and C. T. Lee, Appl. Phys. Lett. 81, 4263 (2002)
    [3] J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S. J. Chang, and Y. K. Su, IEEE Photon. Technol. Lett. 14, 450 (2002)
    [4]J. C. Zolper, R. J. Shul, A. G. Baca, R. G. Wilson, S. J. Pearton, and R. A. Stall, Appl. Phys. Lett. 68, 2273 (1996)
    [5]J. K. Sheu and G. C. Chi, J. Phys. Condens. Matter 14, R657 (2002)
    [6] Y. Chen, D. M. Bagnal, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
    [7] D. C. Look, Mater. Sci. Eng. B. 80, 383 (2001)
    [8] Abstract Booklet, “Second International Workshop on Zinc Oxide”, edited by D. C. Look (Wright State University, Dayton, 2002)
    [9] B. M. Ataev, Y. I. Alivov, V. A. Nikitenko, M. V. Chukichev, V. V. Mamedov, S. S. Makhmudov, J. Optoelectron. Adv. Mater. 5, 899 (2003)
    [10] Clement Yuen, S. F. Yu, Eunice S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, Appl. Phys. Lett. 86, 031112 (2005)
    [11] M. J. Liu and H. K. Kim, Appl. Phys. Lett. 84, 173 (2004)
    [12] M. S. Wagh, G. H. Jain, D. R. Patil, S. A. Patil, L. A. Patil, Sens. Actuators B 115, 128 (2006)
    [13] J. Wollenstein, J. A. Plaza, C. Cane, Y. Min, H. Bottner, H.L. Tuller, Sens. Actuators B 93, 350 (2003)
    [14] S. Mridha, D. Basak, Semicond. Sci. Technol. 21, 928 (2006)
    [15] G. G. Huang, C. T. Wang, H. T. Tang, Y. S. Huang, J. Yang, Anal. Chem. 78, 2397 (2006)
    [16] Z. P. Sun, L. Liu, L. Zhang, D. Z. Jia, Nanotechnol. 17, 2266 (2006)
    CH2
    [1] P. Mitra, A. P. Chatterjee and H. S. Maiti, Mater. Lett.. 35, 33 (1998)
    [2] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, Appl. Phys. Lett. 84, 3654 (2004)
    [3] M. Batzill and U. Diebold, phys. Chem. Chem. Phys. 9, 2307 (2007)
    [4] J. Cerd`a Belmonte, J. Manzano, J. Arbiol, A. Cirera, J. Puigcorb´e, A. Vil`a, N. Sabat´e, I. Gr`acia, C. Can´e, J. R. Morante, Sens. Actuators B 114, 881 (2006)
    [5] P. P. Sahay, J. Mater. Sci. 40,4383 (2005)
    [6] Y. Wang, J. Chen and X. Wu, Mater. Lett. 49, 361 (2001)
    [7] A. Kolmakov, Y. Zhang, G. Chen, M. Moskovits, Adv. Mater. 12, 997 (2003)
    [8] Y. Wu, P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
    [9] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater. 13, 113 (2000)
    [10] Y. Li, G. W. Meng, L. D. Zhang, F. Phillipp, Appl. Phys. Lett. 76, 2011 (2000)
    CH3
    [1] Y. Z. Chiou, Y. K. Su, S. J. Chang, J. Gong, Y. C. Lin, S. H. Liu, and C. S. Chang, IEEE J. Quan. Electron. 39, 681 (2003)
    [2] E. Monroy, E. Muňoz, F. J. Sánchez, F. Calley, E. Calleja, B. Beaumont, P. Gibart, J. A. Muňoz, and F. Cussó, Semicond. Sci. Technol. 13, 1042 (1998)
    [3] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoç¸ G. Smith, M. Estes, B. Goldenberg, W. Yang, and S. Krishnankutty, Appl. Phys. Lett. 71, 2154 (1997)
    [4] M. Mosca, J. L. Reverchon, N. Grandjean, and J. Y. Duboz, IEEE J. Sel. Top. Quan. Electron. 10, 752 (2004)
    [5] N. Biyikli, I. Kimukin, O. Aytur, and E. Ozbay, IEEE Photon. Technol. Lett. 16, 1718 (2004)
    [6] N. Biyikli, I. Kimukin, T. Tut, T. Kartaloglu, O. Aytur, and E. Ozbay, Semicond. Sci. Technol. 19, 1259 (2004)
    [7] G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, U. K. Mishra, and E. J. Tarsa, Appl. Phys. Lett. 75, 247 (1999)
    [8] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, Appl. Phys. Lett. 71, 2334 (1997)
    [9] V. Adivarahan, G. Simin, J. W. Yang, A. Lunev, M. A. Khan, N. Pala, M. Shur, and R. Gaska, Appl. Phys. Lett. 77, 863 (2000)
    [10] S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. J. Kao, G. C. Chi, and J. M. Tsai, IEEE Electron. Dev. Lett. 24, 212 (2003)
    [11] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, Appl. Phys. Lett. 79, 1417 (2001)
    [12] E. Monroy, T. Palacios, O. Hainaut, F. Omnès, F. Calle, and J. F. Hochedez, Appl. Phys. Lett. 80, 3198 (2002)
    [13] J. L. Pau, C. Rivera, E. Muňoz, E. Calleja, U. Schühle, E. Frayssinet, B. Beaumont, J. P. Faurie, and P. Gibart, J. Appl. Phys. 95, 8275 (2004)
    [14] C. F. Shih, N. C. Chen, C. A. Chang, and K. S. Liu, Jpn. J. Appl. Phys. 44, L140 (2005)
    [15] H. Ishikawa, K. Asano, B. Zhang, T. Egawa, and T. Jimbo, Phys. Status Solidi A-Appl. Mat. 201, 2653, (2004)
    [16] S. Iwakami, M. Yanagihara, O. Machida, E. Chino, N. Kaneko, H. Goto, and K. Ohtsuka, Jpn. J. Appl. Phys. 43, L831 (2004)
    [17] A. Curutchet, N. Malbert, N. Labat, A. Touboul, C. Gaquiere, A. Minko, and M. Uren, Microelectron. Reliab. 43, 1713 (2003)
    [18] P. Javorka, A. Alam, A. Marso, M. Wolter, J. Kuzmik, A. Fox, M. Heuken, and P. Kordos, Microelectron. J. 34, 435 (2003)
    [19] V. Hoel, Y. Guhel, B. Boudart, C. Gaquiere, J. C. De Jaeger, H. Lahreche, and P. Gibart, Electron. Lett. 37, 1095 (2001)
    [20] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, IEEE J. Sel. Top. Quan. Electron. 8, 278 (2002)
    [21] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin and J. C. Ke, IEEE J. Quan. Electron. 39, 1439 (2003)
    [22] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, IEEE J. Sel. Top. Quan. Electron. 8, 744 (2002)
    [23] S. J. Chang, C. S. Chang, Y. K. Su, C. T. Lee, W. S. Chen, C. F. Shen, Y. P. Hsu, S. C. Shei and H. M. Lo, IEEE Tran. Adv. Packaging 28, 273 (2005)
    [24] Yu-Zung Chiou, IEEE Electron Device Lett. 26, 172 (2005)
    [25] C. K. Wang, S. J. Chang, Y. K. Su, Senior Member, IEEE, Y. Z. Chiou, S. C. Chen, C. S. Chang, T. K. Lin, H. L. Liu, and J. J. Tang, IEEE Trans. Electron Devices 53, 38 (2006)
    [26] A. Osinsky, S. Gangopadhyay, J. W. Yang, and R. Gaska, Appl. Phys. Lett. 72, 551 (1998)
    [27] Y. Z. Chiou, J. Electrochem. Soc. 152, G639 (2005)
    [28] A. Osinsky, S. Gangopadhyay, J. W. Yang, R. Gaska,D. Kuksenkov, H. Temkin, I. K. Shmagin, Y. C. Chang, J. F. Muth, and R. M. Kolbas, Appl. Phys. Lett. 72, 551 (1998)
    [29] A. Rose, Concepts in Photoconductivity and Allied Problems (New York: Wiley) (1963)
    CH4
    [1] T. M. Barnes, J. Leaf, S. Hand, C. Fry and C. A. Wolden, J. Appl. Phys. 96, 7036 (2004)
    [2] H. Kato, M. Sano, K. Miyanoto and T. Yao, Jpn. J. Appl. Phys. 42, L1002 (2003)
    [3] Y. R. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, Y. S. Park and C. J. Youn, Appl. Phys. Lett. 83, 153504 (2005)
    [4] N. R. Aghamalyan, R. K. Hovsepyan, A. R. Poghosyan and V. G. Lazaryan, Proc. SPIE 5560, 235 (2004)
    [5] D. K. Hwang, S. H. Kang, J. H. Lim, E. J. Yang, J. Y. Oh, J. H. Yang and S. J. Park, Appl. Phys. Lett. 86, 222101 (2005)
    [6] A. Mang, K. Reimann and S. Rübenacke, Solid State Commun. 94, 251 (2005)
    [7] A. Setiawan, Z. Vashaei, M. W. Cho, T. Yao, H. Kato, M. Sano, K. Miyamoto, I. Yonenaga and H. J. Ko, J. Appl. Phys. 96, 3763 (2004)
    [8] E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth and M. Grundmann, Appl. Physi. Lett. 82, 3901 (2003)
    [9] J. Narayan, K. Dovidenko, A. Sharma and S. Oktyabrsky, J. Appl. Phys. 84, 2597 (1998)
    [10] W. N. Yim and R. J. Paff, J. Appl. Phys. 45, 1456 (1974)
    [11] S. Ono, K. Wasa and S. Hayakawa, Wave Electron. 3, 35 (1977)
    [12] A. Nahhas, H. K. Kim and J. Blachere, Appl. Phys. Lett. 78, 1511 (2001)
    [13] J. H. Choi, H. Tabata and T. Kawai, J. Cryst. Growth 478, 218 (2005)
    [14] K. Iwata, P. Fons, S. Niki, A. Yamada, K. Matsubara, K. Nakahara, T. Tanabe and H. Takasu, J. Cryst. Growth 214-215, 50 (2000)
    [15] L. Wang, Y. Pu, Y. F. Chen, C. L. Mo, W. Q. Fang, C. B. Xiong, J. N. Dai and F. Y.
    Jiang, J. Cryst. Growth 284, 459 (2005)
    [16] J. Zhu, B. Lin, X. Sun, R. Yao, C. Shi and Z. Fu, Thin Solid Film 284, 459 (2001)
    [17] X. N. Wang, Y. Wang, Z. X. Mei, J. Dong, Z. Q. Zeng, H. T. Yuan, T. C. Zhang, X. L. Du, J. F. Jia, Q. K. Xue, X. N. Zhang, Z. Zhang, Z. F. Li, W. Lu, Appl. Phys. Lett. 90, 151912 (2007)
    [18] D. R. Lide, CRC Handbook of Chemistry and Physics, 74th ed., 5 (1994)
    [19] N. J. Watkins, G. W. Wicks and Y. Gao, Appl. Phys. Lett. 75, 2602 (1999)
    [20] T. Yamaguchi, K. Mizuo, Y. Saito, T. Noguchi, T. Araki, Y. Nanishi, T. Miyajima and Y. Kudo, Mat. Res. Soc. Symp. Proc. 743, L326. (2005)
    [21] C. L. Wu, J. C. Wang, M. H.Chan, T. T. Chen, and S. Gwo, Appl. Phys. Lett. 83, 4530 (2003)
    [22] Y. Horikoshi, Jpn. J. Appl. Phys. 27, 169 (1998)
    [23] S. S. Kim and B. T. Lee, Thin Solid Films 446, 307 (2004)
    [24] Y. Zhao, C. W. Tu, I. T. Bae and T. Y. Seong, Appl. Phys. Lett. 74, 3182 (1999)
    [25] S. Oktyabrsky, K. Dovidenko, A. Sharma, J. K. Narayan and V. Joshkin, Appl. Phys. Lett. 74, 2465 (1999)
    [26] X. Zhou, S. Gu, F. Qin, S. Zhu, J. Ye, S. Liu, W. Liu, R. Zhang, Y. Shi and Y. Zheng, J. Cryst. Growth 269, 362 (2004)
    [27] S. W. Kim, S. Fujita and S. Fujita, Jpn. J. Appl. Phys. 41, L543 (2002)
    [28] I. S. Kima, T. H. Kima, S. S. Kima, C. R. Leeb, B. T. Leea, J. Cryst. Growth 299, 295 (2007)
    [29] S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong and J. B. Ketterson, Appl. Phys. Lett. 75, 2761 (1999)
    CH5
    [1] Y. Chen, D. M. Bagnal, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998)
    [2] R. D. Vispute, M. He, X. Tang, Y. X. Li, L. G. Salamanca-Riba, A. A. Iliadis, K. A. Jones, Appl. Phys. Lett. 73, 348 (1998)
    [3] D. C. Look, Mater. Sci. Eng. B. 80, 383 (2001)
    [4] Abstract Booklet, “Second International Workshop on Zinc Oxide”, edited by D. C. Look (Wright State University, Dayton, 2002)
    [5] B. M. Ataev, Y. I. Alivov, V. A. Nikitenko, M. V. Chukichev, V. V. Mamedov, S. S. Makhmudov, J. Optoelectron. Adv. Mater. 5, 899 (2003)
    [6] Clement Yuen, S. F. Yu, Eunice S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, Appl. Phys. Lett. 86, 031112 (2005)
    [7] M. J. Liu and H. K. Kim, Appl. Phys. Lett. 84, 173 (2004)
    [8] K. Ip, Y.W. Heo, D.P. Norton, S.J. Pearton, J.R. LaRoche, F. Ren, Appl. Phys. Lett. 85, 1169 (2004)
    [9] A. Tsukazaki, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater. 4, 42 (2005)
    [10] W.Z. Xu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, B.H. Zhao, L. Jiang, J.G. Lu, H.P. He, S.B. Zhang, Appl. Phys. Lett. 88, 173506 (2006)
    [11] Ya. I. Alivov, J. E. Van Nostrand, D. C. Look, M. V. Chukichev, and B. M. Ataev, Appl. Phys. Lett. 83, 2493 (2003)
    [12] Ya. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev, and D. M. Bagnall, Appl. Phys. Lett. 83, 4719 (2003)
    [13] A. E. Tsurkan, N. D. Fedotova, L. V. Kicherman, and P. G. Pas’ko, Semiconductors 6, 1183 (1975)
    [14] I. T. Drapak, Semiconductors 2, 624 s1968d. 9H. Hosono, H. Ohta, K. Hayashi, M. Orita, and M. Hirano, J. Cryst. Growth 496, 237 (2001)
    [15] A. Osinsky, J. W. Dong, M. Z. Kauser, B. Hertog, A. M. Dabiran, P. P. Chow, S. J. Pearton, O. Lopatiuk, and L. Chernyak, Appl. Phys. Lett. 85, 4272 (2004)
    [16] H. Y. XU, Y. C. LIU, Y. X. LIU, C. S. XU, C. L. SHAO, and R. MU, Appl. Phys. B. 80, 871 (2005)
    [17] Dae-Kue Hwang, Soon-Hyung Kang, Jae-Hong Lim, Eun-Jeong Yang, Jin-Yong Oh, Jin-Ho Yang, and Seong-Ju Park, Appl. Phys. Lett. 86, 222101 (2005)
    [18] D. J. Rogers, F. Hosseini Teherani, A. Yasan, K. Minder, P. Kung, and M. Razeghi, Appl. Phys. Lett. 88, 141918 (2006)
    [19] H. L. Zhou, S. J. Chua, H. Pan, J. Y. Lin, Y. P. Feng, L. S. Wang, W. Liu, K. Y. Zang, and S. Tripathy, Electrochem. Solid State Lett. 10, 98 (2007)
    [20] Hiroshi Amano, Masahiro Kitoh, Kazumasa Hiramatsu, and Isamu Akasaki, J. Electrochem. Soc. 137, 1639, (1990)
    [21] W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, S. M. Liu, X. Zhou, R. Zhang, Y. Shi, Y. D. Zheng, Y. Hang, and C. L. Zhang, Appl. Phys. Lett. 88, 092101, (2006)
    [22] S. Nakamura, T. Mukai, and M. Senon, Jpn. J. Appl. Phys. Part 2 30, 1998 (1991)
    [23] R. J. Molnar, R. Singh, and T. D. Moustakas, Appl. Phys. Lett. 66, 268 (1995)
    [24] B. Goldenberg, J. D. Zook, and R. J. Ulmer, Appl. Phys. Lett. 62, 381, (1992)
    [25] T. W. Kang, S. H. Park, H. Song, T. W. Kim, G. S. Yoon and C. O. Kim, J. Appl. Phys. 84, 2082, (1998)
    CH6
    [1] S. J. Chang, C. L. Yu, R. W. Chuang, P. C. Chang, Y. C. Lin, Y. W. Jhan and C. H. Chen, IEEE Sens. J. 6, 1043 (2006)
    [2] N. Vanhove, J. John, A. Lorenz, K. Cheng, G. Borghs, J. E. M. Haverkort, Appl. Surf. Sci. 253, 2930 (2006)
    [3] J. Ohsawa, T. Kozawa, O. Ishiguro and H. Itho, Jpn. J. Appl. Phys. 45, 435 (2006)
    [4] T. K. Ko, S. J. Chang, Y. K. Su, Y. Z. Chiou, C. S. Chang, S. C. Shei, J. K. Sheu, W. C. Lai, Y. C. Lin, W. S. Chen and C. F. Shen, IEEE Tran. Adv. Packaging 29, 483 (2006)
    [5] T. K. Ko, S. J. Chang, J. K. Sheu, S. C. Shei, Y. Z. Chiou, M. L. Lee, C. F. Shen, S. P. Chang and K. W. Lin, Semicond. Sci. Technol. 21, 1064 (2006)
    [6] J. D. Hwang and C. C. Lin, Thin Solid Films 491, 276 (2005)
    [7] T. K. Lin, S. J. Chang, Y. Z. Chiou, C. K. Wang, S. P. Chang, K. T. Lam, Y. S. Sun and B. R. Huang, Solid-State Electron. 50, 750 (2006)
    [8] S. J. Chang, T. K. Lin, Y. K. Su, Y. Z. Chiou, C. K. Wang, S. P. Chang, C. M. Chang, J. J. Tang and B. R. Huang, IEEE Sens. J. 6, 945 (2006)
    [9] T. K. Lin, S. J. Chang, Y. K. Su, Y. Z. Chiou, C. K. Wang, C. M. Chang and B. R. Huang, IEEE Tran. Electron. Dev. 52, 121 (2005)
    [10] T. K. Lin, S. J. Chang, Y. K. Su, Y. Z. Chiou, C. K. Wang, S. P. Chang, C. M. Chang, J. J. Tang and B. R. Huang, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 119, 202 (2005)
    [11] S. J. Chang, T. K. Lin, Y. K. Su, Y. Z. Chiou, C. K. Wang, S. P. Chang, C. M. Chang, J. J. Tang and B. R. Huang, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 127, 164, (2006)
    [12] T. M. Barnes, J. Leaf, S. Hand, C. Fry and C. A. Wolden, J, Appl. Phys. 96, 7036 (2004)
    [13] H. Kato, M. Sano, K. Miyanoto and T. Yao, Jpn. J. Appl. Phys. 42, 1002 (2003)
    [14] D. C. Look, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 80, 383 (2001)
    [15] Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev and D. M. Bagnall, Appl. Phys. Lett. 83, 4719 (2003)
    [16] N. R. Aghamalyan, R. K. Hovsepyan, A. R. Poghosyan and V. G. Lazaryan, Proc. SPIE Int. Soc. Opt. Eng. 5560, 235 (2004)
    [17] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu and H. Shen, J. Crystal Growth 225, 110 (2001)
    [18] A. Mang, K. Reimann and S. Rubenacke, Solid State Comm. 94, 251 (1995)
    [19] H. Ohta, M. Kamiya, T. Kamiya, M. Hirano and H. Hosono, Thin Solid Films 445, 317 (2003)
    [20] D. Basak, G. Amin, B. Mallik, G. K. Paul and S. K. Sen, J. Crystal Growth 256, 73 (2003)
    [21] C. L. Hsu, S. J. Chang, Y. R. Lin, P. C. Li, T. S. Lin, S. Y. Tsai, T. H. Lu, I. C. Chen, Chem. Phys. Lett. 416, 75 (2005)
    [22] M. Liu and H. K. Kim, Appl. Phys. Lett. 84, 173 (2004)
    [23] Y. Chen, H. J. Ko, S. K. Hong and T. Yao, Appl. Phys. Lett. 76, 559 (2000)
    [24] F. Vigue, P. de Mierry, J. P. Faurie, E. Monroy, F. Calle, and E. Munoz, Electron. Lett. 36, 826 (2000)
    [25] Hyuck Soo Yang, D. P. Norton, S. J. Pearton and F. Ren, Appl. Phys. Lett. 87, 212106 (2005)
    [26] S. M. Sze, Semiconductor Devices Physics and Technology (1936)
    [27] S. Salvatori, M. C. Rossi, F. Galluzzi, E. Pace, P. Ascarelli and M.Marinelli, Diamond and Related Mater. 7, 811 (1998)
    [28] S. J. Baik, J. H. Jang, C. H. Lee, W. Y. Cho and K. S. Lim, Appl. Phys. Lett. 70, 3516
    (1997)
    [29] Q. H. Li, Q. Wan, Y. X. Liang and T. H. Wang, Appl. Phys. Lett. 84, 4556 (2004)
    [30] J. T. Xu, D. You, Y. W. Tang, Y. Kang, X. Li, X. Y. Li and H. M. Gong, Appl. Phys. Lett. 88, 072106 (2006)
    [31] M. Salis, A. Anedda, F. Quarati, A. J. Blue and W. J. Cunningham, J. Appl. Phys. 97, 033709 (2005)
    [32] B. Poti, A. Passaseo, M. Lomascolo, R. Cingolani and M. De Vittorio, Appl. Phys. Lett. 85, 6083 (2004)
    [33] T. K. Lin, S. J. Chang, Y. K. Su, B. R. Huang, M. Fujita and Y. Horikoshi, J. Crystal Growth 281, 513 (2005)
    [34] D. Basak, G. Amin, B. Mallik, G. K. Paul and S. K. Sen, J. Crystal Growth 256, 73 (2003)
    [35] P. Sharma, K. Sreenivas and K. V. Rao, J. Appl. Phys. 93, 3963 (2003)
    [36] S. J. Chang, T. K. Lin, Y. K. Su, Y. Z. Chiou, C. K. Wang, S. P. Chang, C. M. Chang, J. J. Tang, B. R. Huang, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 127, 164 (2006)
    [37] S. J. Young, L. W. Ji., S. J. Chang, S. H. Liang, K. T. Lam, T. H. Fang, X. L. Du and Q. K. Xue, Sens. Actuator A-Phys. 135, 529 (2007)
    [38] T. G. M. Kleinpenning, Solid-State Electron. 22, 121 (1979)
    [39] F. N. Hooge, Physica 60, 130 (1972)
    [40] S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, M. A. Khan, G. Simin, X. Hu and J. Yang, Electron. Lett. 37, 720 (2001)
    [41] L. Anghel, T. Ouisse, T. Billon, P. Lassagne and C. Jaussaud, Semicond. Conf. International 2, 539 (1996)
    CH7
    [1] W. R. Chang, Y. K. Fang, S. F. Ting, Y. S. Tsair, C. N. Chang, C. Y. Lin, S. F. Chen, IEEE Electron Device Lett. 24, 565 (2003).
    [2] S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. J. Kao, G. C. Chi, Tsai JA, IEEE Electron Device Lett. 24, 212 (2003).
    [3] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, M. Burns, J. Appl. Phys. 76, 1363 (1994)
    [4] E. Monroy, F. Omnes, F. Calle, Semicond. Sci. Technol. 18 ,R33 (2003)
    [5] C. L. Hsu, S. J. Chang, Y. R. Lin, P. C. Li, S. T. Lin, S. Y. Tsai, T. H. Lu, I. C. Chen, Chem. Phys. Lett. 416, 75 (2005).
    [6] D. C. Look, B. Claflin, Y. I. Alivov, S. J. Park, Phys. Status Solidi A-Appl. Mat. 201, 2203 (2004).
    [7] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang , Science 292, 1897 (2001)
    [8] C. L. Hsu, S. J. Chang, Y. R. Lin, J. M. Wu, S. T. Lin, S. Y. Tsai, I. C. Chen, Nanotechnology 17, 516 (2006)
    [9] B. Liu, H. C. Zeng, J. Am. Chem. Soc. 125, 4430 (2003)
    [10] J. J. Wu, S. C. Liu, J. Phys. Chem. B 106, 9546 (2002)
    [11] S. Muthukumar, H. F. Sheng, J. Zhong, Z. Zhang, N. W. Emanetoglu, Y. C. Lu, IEEE Trans. Nanotechnol. 2, 50 (2003)
    [12] H. J. Fan, R. Scholz, F. M. Kolb, M. Zacharias, Appl. Phys. Lett. 85, 4142 (2004)
    [13] S. Kim, M. C. Jeong, B. Y. Oh, W. Lee, J. M. Myoung, J. Cryst. Growth 290, 485 (2006)
    [14] X. T. Zhang, Y. C. Liu, L. G. Zhang, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, X. W. Fan, X. G. Kong, Appl. Phys. Lett. 92, 3293 (2002).
    [15] G. Sberveglieri, S. Groppelli, P. Nelli, A. Tintinelli, G. Giunta, Sens. Actuators B 25, 588 (1995)
    [16] A. B. Djurisic, Y. H. Leung, Small 2, 944 (2006)
    [17] A. M. Glushenkov, H. Z. Zhang, J. Zou, G. Q. Lu, Y. Chen, Nanotechnology 18, 175604 (2007)
    [18] Y. W. Heo, D. P. Norton, S. J. Pearton, J. Appl. Phys. 98, 073502 (2005)
    [19] X. Liu, X. Wu, H. Cao, R. P. H. Chang, J. Appl. Phys. 95, 3141 (2004)
    [20] C. L. Hsu, S. J. Chang, H. C. Haung, Y. R. Lin, C. J. Huang, Y. K. Tseng, I C. Chen, J. Electrochem. Soc. 152, G378 (2005)
    [21] C. L. Hsu, Y. R. Lin, S. J. Chang, T. H. Lu, T. S. Lin, S. Y. Tsai, I C. Chen, , J. Electrochem. Soc. 153, G333 (2006)
    [22] C. L. Hsu, S. J. Chang, Y. R. Lin, S. Y. Tsai, I C. Chen, Chem. Commun. 3571, (2005)
    [23] S. J. Young, L. W. Ji, S. J. Chang, Y. P. Chen, K. T. Lam, S. H. Liang, X. L. Du, Q. K. Xue, Y. S. Sun, IET Optoelectron. 1, 135 (2007)
    [24] S. J. Young, L. W. Ji, T. H. Fang, S. J. Chang, Y. K. Su, X. L. Du, Acta Mater. 55, 329
    (2007)
    [25] Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, Appl. Phys. Lett. 86, 123117 (2005)
    [26] O. Harnack, C. Pacholski, H. Weller, A. Yasuda and J. M. Wessels, Nano Lett. 3, 1097 (2003)
    [27] Y. W. Heo, B. S. Kang, L. C. Tien, D. P. Norton, F. Ren, J. R. La Roche and S. J. Pearton, Appl. Phys. A-Mater. Sci. Process. 80, 497 (2005)
    [28] B. L. Zhu, C. S. Xie, W. Y. Wang, K. J. Huang, J. H. Hu, Mater. Lett. 58, 624 (2004)
    [29] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, C. L. Lin, Appl. Phys. Lett. 84, 3654 (2004)
    [30] P. Mitra, A. P. Chatterjee, H. S. Maiti, Mater. Lett. 35, 33 (1998)
    [31] T. J. Hsueh, C. L. Hsu, S. J. Chang, I. C. Chen, Laterally grown ZnO nanowire ethanol gas sensors, Sens. Actuators B 126, 473 (2007)
    [32] N. Barsan, M. Schweizer-Berberich and W. Göpel, Fresenius J. Anal. Chem. 365, 287 (1999)
    [33] D. Kohl, Sens. Actuators B 1, 158 (1990)
    [34] P. P. Sahay, J. Mater. Sci. 40, 4383 (2005)
    [35] F. Hellegouarc’h, F. Arefi-Khonsari, R. Planade and J. Amouroux, Sens. Actuators B 73, 27 (2001)
    CH8
    [1] Q. Y. Cai, L. Yang,Y. Yu, Thin Solid Films 515, 1802 (2006)
    [2] D. S. Zhang, H. X. Fu, L. Y. Shi, J. H. Fang, Q. Li, J. Solid State Chem. 180, 654 (2007)
    [3] W. Zhu, W. Z. Wang, H. L. Xu, J. L. Shi, Mater. Chem. Phys. 99, 127 (2006)
    [4] Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, D. P. Yu, Appl. Phys. Lett. 83, 1689 (2003)
    [5] K. P. Kalyanikutty, M. Nikhila, U. Maitra, C. N. R. Rao, Chem. Phys. Lett. 432, 190 (2006)
    [6] G. Shen, Y. Bando, D. Golberg, J. Phys. Chem. B 110, 23170 (2006)
    [7] N. Kumar, A. Dorfman, J. Hahm, J. Nanosci. Nanotechnol. 5, 1915 (2005)
    [8] J. Duan, X. Huang, E. Wang, Mater. Lett. 60, 1918 (2006)
    [9] H. Yu, Z. Zhang, M. Han, X. Hao, F. Zhu, J. Am. Chem. Soc. 127, 2378 (2005)
    [10] X. Kong, X. Sun, X. Li, Y. Li, Mater. Chem. Phys. 82, 997 (2003)
    [11] X. L. Yuan, B. P. Zhang, J. Niitsuma, T. Sekiguchi, Mater. Sci. Semicond. Processing 9,146 (2006)
    [12] Y. M. Lu, H. W. Liang, D. Z. Shen, Z. Z. Zhang, J. Y. Zhang, D. X. Zhao, Y. C. Liu, X. W. Fan, J. Luminescence 119-120, 228 (2006)
    [13] X. P. Shen, A. H. Yuan, Y. M. Hu, Y. Jiang, Z. Xu, Z. Hu, Fabrication, Nanotechnol. 16, 2039 (2005)
    [14] M. S. Wagh, G. H. Jain, D. R. Patil, S. A. Patil, L. A. Patil, Sens. and Actuators B 115, 128 (2006)
    [15] J. Wollenstein, J. A. Plaza, C. Cane, Y. Min, H. Bottner, H.L. Tuller, Sens. and Actuators B 93, 350 (2003)
    [16] S. Mridha, D. Basak, Semicond. Sci. Technol. 21, 928 (2006)
    [17] G. G. Huang, C. T. Wang, H. T. Tang, Y. S. Huang, J. Yang, Anal. Chem. 78, 2397 (2006)
    [18] Y. Sun, N. G. Ndifor-Angwafor, D. J. Riley, M. N.R. Ashfold, Chem. Phys. Lett. 431, 352 (2006)
    [19] P. Mitra, A. P. Chatterjee, H. S. Maiti, Mater. Lett. 35, 33 (1998)
    [20] T. J. Hsueh, C. L. Hsu, S. J. Chang, C. Y. Lu, Y. R. Lin, I. C. Chen, J. Nanosci. Nanotechnol. 7, 1076 (2007)
    [21] T. J. Hsueh, C. L. Hsu, S. J. Chang, I. C. Chen, Sens. Actuators B 126, 473 (2007)
    [22] D. Kohl, The role of noble-metals in the chemistry of solid-state gas sensors, Sens. Actuators B 1, 158 (1990)
    [23] P. P. Sahay, J. Mater. Sci. 40, 4383 (2005)
    [24] T. Gao, T. H. Wang, Appl. Phys. A 80, 1451 (2005)
    CH9
    [1] 國立成功大學博士論文,” efficiency of GaN based light emitting diodes improved by chip process technique and the growth of GaN based light emitting diodes on Si substrate,” by Yi-Chao Lin (2005)
    [2] S. Kaiser, M. Jakob, J. Zweck, W. Gebhardt O. Ambacher, R. Dimitrov, A. T. Schremer, J. A. Smart, and J. R. Shealy, J. Vac. Scien. Technol. B 18, 733 (2000)
    [3] Z. Lao, V. Hurm, W. Bronner, A. Hulsmann, T. Jakobus, K. Kohler, M. Ludwig, B. Raynor, J. Rosenzweig, M. Schlechtweg, and A. Thiede, IEEE Photo. Tec. Lett. 10, 710 (1998)
    [4] R. L. Hoffman, B. J. Norris and J. F. Wager, Appl. Phys. Lett. 82, 733 (2003)
    [5] D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J.Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng, Appl. Phys. Lett. 72, 3458 (1998)
    [6] W. Q. Han, S. S. Fan, Q. Q. Li, and Y. D. Hu, Science 277, 1287 (1997)
    [7] J. J. Wu and S. C. Liu, Adv. Mater. 14, 215 (2002)
    [8] W. I. Park, Y. H. Jun, S. W. Jung, and G. C. Yi, Appl. Phys. Lett. 82, 964 (2003)
    [9] N. Pan, X. Wang, K. Zhang, H. Hu, B. Xu, F. Li, and J. G. Hou, Nanotechnol. 16, 1069 (2005)
    [10] Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, Appl. Phys. Lett. 78, 407 (2001)
    [11] Z. W. Pan, Z. R. Dai and Z. L. Wang, Science 291, 1947 (2001)
    [12] Y. Du, S. Han, W. Jin, C. Zhou, and A. F. J. Levi, Appl. Phys. Lett. 83, 996 (2003)
    [13] K. Keem, H. Kim, G. T. Kim, J. S. Lee, B. Min, K. Cho, M. Y. Sung, and S. Kim, Appl. Phys. Lett. 84, 4376 (2004)
    [14] Y. W. Heo, B. S. Kang, L. C. Tien, D. P. Norton, F. Ren, J. R. LaRoche, and S. J. Pearton, Appl. Phys. A 80, 1029 (2005)

    下載圖示 校內:2014-07-21公開
    校外:2014-07-21公開
    QR CODE