簡易檢索 / 詳目顯示

研究生: 郭耀仁
Kuo, Yao-Jrn
論文名稱: 新型介電泳細胞分類晶片之數值模擬與最佳化設計
Numerical Simulation and Optimal Design on New Type Dielectrophoretic-based Cytosorters
指導教授: 呂宗行
Leu, Tzong-Shyng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 95
中文關鍵詞: 介電泳介電泳力微管道流場細胞分類最佳化
外文關鍵詞: DOE, optimal, design of experiments, RSM, response surface, cytosorter, dielectrophoresis, DEP
相關次數: 點閱:91下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在設計一新型細胞分類晶片並利用本研究發展標準設計流程;經由理論推導,可得在微流管道中粒子受到介電泳力與流體力影響所產生之偏移量相關參數式如下:
    %[方程式]%
    經過本文推導及數值模擬驗證之後,可得到以下推論:
     Xf區段粒子偏移量與粒徑平方成正比
     Xf區段粒子偏移量與Xf長度成正比
     Xf區段粒子偏移量與流速成反比
     Xf區段粒子偏移量與管道寬度立方成反比
    本文更設計多片式下電極陣列作為晶片電極設計並進行模擬驗證,得知在本晶片電極長度限制之下,兩片式下電極設計為偏移量最大之設計。
    本文亦採用最佳化方法進行單片式下電極及兩片式下電極陣列的最佳化設計,在此最佳化方法的應用之下,本研究從465個參數樣本降低至50個參數樣本,並得到最佳化參數點與粒子最終偏移量分佈趨勢,得知最佳化方法可在有效降低參數樣本的情況下對粒子最終偏移量進行預測。針對單片式下電極進行最佳化得到最佳化參數點為(Xf,Xb)=(252,259),兩片式下電極陣列所得到之最佳化參數點為(L2,L3)=(181,71)。
    在有效最佳化及降低參數樣本等兩個優點之下,本研究之設計流程可發展成為一套有力之設計工具,可提高對於物理及工程的研究效率,在未來更可拓展更大的應用空間。

    The study presents new-type cytosorters and using this cytosorter to develop a standard design process. Through theoretical result, the particle deflection induced by Dielectrophoretic and hydrodynamic force in micro-channel is shown as the following equation:
    %[Equation]%
    After deducing in theoretical and verifying by numerical simulation, the conclusion can be made as follows, the particle deflection in Xf area is:
     Being square direct ratio to the particle diameter.
     Being direct ratio to the length Xf.
     Being inverse ratio to the fluid velocity.
     Being cubic inverse ratio to the channel width.
    In this study the multi-electrodes matrix cases are designed and verified with numerical simulation, and the design of the matrix with two-electrodes is the best one within this electrode limit in the chip.
    Further more, the optimal method is used in the study to design the single-electrode and two-electrodes matrix, and in the application of the optimal method the experiment sampling points can be reduced from 465 to 50. At the same time, the optimal design point and the particle final-deflection tendency can be known, so that one can know that the optimal method can predict the particle final-deflection in the condition that the experiment sampling points are reduced. The optimal design in single-electrode case is (Xf,Xb)=(252,259), and the optimal design in two-electrode case is (L2,L3)=(181,71).
    Under the two benefits that optimizing efficaciously and reducing experiment sampling points, the design process in the study can be developed as a powerful design tool; which can improve the study efficiency in physical problems, and can expand to a larger application.

    摘要 i Abstract ii 誌謝 iii 目錄 v 圖表目錄 ix 第1章 緒論 1   1-1 前言 1   1-2 研究動機 2   1-3 文獻回顧 2     1-3-1 生物醫學晶片 2     1-3-2 細胞分類晶片 3     1-3-3 最佳化方法 7   1-4 本文架構 10 第2章 理論基礎及系統設計依據 12   2-1 微管道流場理論探討 12     2-1-1 連續方程式 13   2-2 阻力方程式 14   2-3 電場與介電泳效應探討 15     2-3-1 電場 15     2-3-2 介電泳效應 16   2-4 最佳化方法 18     2-4-1 參數設計法(DOE) 19     2-4-2 反應曲面法(RSM) 20 第3章 晶片設計及研究方法 22   3-1 系統介紹 22   3-2 CFDRC套裝程式介紹 23   3-3 格點密度測試 24   3-4 準確度測試 24     3-4-1 管道流場 24     3-4-2 利用連續方程式驗證粒子聚焦系統 25     3-4-3 電場 27 第4章 粒子偏移系統數值分析 29   4-1 偏移量參數探討 29   4-2 電極配置 30     4-2-1 Xf設計參數 32     4-2-2 Xb設計參數 33     4-2-3 短電極設計 35     4-2-4 電極前後端對稱形式 35     4-2-5 綜合分析及結論: 36 微流晶片電極配置   4-3 偏移系統其他參數設計 39     4-3-1 改變平均流速 39     4-3-2 改變管道寬度 40     4-3-3 加入不同粒徑粒子 42   4-4 等間隔型下電極陣列設計 43 第5章 最佳化結果及討論 45   5-1 以參數設計法(DOE)進行座標採樣 45   5-2 以反應曲面法(RSM)對粒子偏移量做最佳化 47   5-3 兩片式下電極陣列最佳化設計 49 第6章 結論 50 圖表 54 附錄 86   A. 參數設計法計算範例 86   B. 聚焦流參數設計 88   C. 介電泳效應推導過程 89   D. 兩片式下電極陣列設計與粒子偏移量表 91   E. 管道內溫度場分析 92

    [1]. Richard Feyman, “There is Plenty of Room at the Bottom” , http://www.zyvex.com/nanotech/feynman.html, 1959
    [2]. Helene Andersson, and Albert van den Berg, “Microfluidic devices for cellomics: a review”, Sensors and Actuators, B92, pp.315-325, 2003.
    [3]. Yoon, Y., et. al., “Integrated Vertical Screen Microfilter System, using Inclined SU-8 Structures”, Proc. IEEE Int. Conf. MEMS2003, pp. 227-230, 2003.
    [4]. Brody, J.P., Osborn, T.D., Forster, F.K. and Yager, P. A Planar, “Microfabricated Fluid Filter”, Sensors and Actuators A (Physical), A54 (1-3), pp.704-708, 1996.
    [5]. Shapiro, H.M, ” Practical Flow Cytometry”, New York: Alan R. Liss, 1988.
    [6]. Goranovic, G.. et.al., ” Three-dimensional Single Step Flow Sheathing in Micro Cell Sorters”, Modeling and Simulation of Microsystems, pp. 242-245, 2001.
    [7]. Chang, Sh. Lin, Ch. Lee, G., ” Micromachine-based Multi-channel Flow Cytometers for Cell/particle Counting and Sorting”, Journal of Micromech, Microeng, 15, pp. 447-454, 2005.
    [8]. Grover, S.C., Skirtach, A.G., Gauthier, R.C., Grover, C.P., ” Automated Single-cell Sorting System Based on Optical Trapping”, Journal of Biomedical Optics, 6 (1), pp. 14-22, 2001.
    [9]. Hirano, K. Baba, Y., ” Optical Recovery of Particles on a Chip Toward Cell Sorting and Bead-bed Detection”, Proceedings of MicroTAS, Nara, Japan, November, pp. 272-274, 2002.
    [10]. Wang. M. et. al., “ Microfluidic sorting of mammalian cells by optical force switching”, Nature Biotechnology, 23, pp. 83-87, 2004.
    [11]. Ashkin, A., “ Optical trapping and manipulation of neutral particles using lasers”, Biophysics, 94, pp. 4853-4860, 1997.
    [12]. Telleman, P., Larsen, U.D , Philip, J., Blankenstein, G.., Wolff, A., “Cell sorting based on continuous hydrodynamic parallel flow”, Proceedings of MicroTAS 1998, Banff, Alberta, Canada, 13-16, pp. 39-44, 1998.
    [13]. Chronis, N., Lam, W., Lee, “A microfabricated bio-magnetic separator based”, California, USA, pp. 497-498, 2001.
    [14]. Anne, Y.F., Spence, C., Scherer, A., Arnold, F.H. and Quake, S.R., “A microfabricated fluorescene-activated cell sorter”, Nano Biotechnology, Nov. 17 (11), pp. 1109-1111, 1999.
    [15]. Kruger, J. et. al., “Development of a microfluidic device for fluorescence activated cell sorting”, Journal of Micromech, Microeng, 12, pp. 486-494, 2002.
    [16]. Wollff, A. et. al., ”Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter”, Lab Chip, 3, pp. 22-27, 2003.
    [17]. 范永達,”高速細胞分離術”,科學月刊第82期http://book.tngs.tn.edu.tw/database/scientieic/content/1976/00100082/0006.htm
    [18]. K. Seiler, D.J. Harrison, and A. Manz, “Planar chips technology for miniaturization and integration of separation techniques into monitoring systems,” J. Chromato., Vol. 593. pp. 253-258, 1992.
    [19]. S. J. Lee, and S. Y. Lee, “Micro total analysis system (μ-TAS) in biotechnology,” App Microbiol Biotechnol 64, pp. 289–299, 2004.
    [20]. 網路資料,http://www.ornl.gov/sci/lsm/FlowCytometry.html
    [21]. Xiao-Bo Wang, Jun Yang, and Ying Huang, “Cell Separation by Dielectrophoretic Field-flow-fractionation,” Anal. Chem., 72, pp. 832-839, 2000.
    [22]. Jun Yang, Ying Huang, and Xiao-Bo Wang, “Differential Analysis of Human Leukocytes by Dielectrophoretic Field-Flow-Fractionation,” Biophysical Journal, Vol. 78, pp. 2680-2689, 2000.
    [23]. Peter Gascoyne, “Microsample preparation by dielectrophoresis: isolation of malaria,” Lab Chip, Vol. 2, pp. 70–75, 2002.
    [24]. Peter Gascoyne and Jody Vykoukal “Magnetophoretic-dielectrophoretic field-flow fractionation,” Abstracts of Papers, 225th ACS National Meeting, New Orleans, LA, United States, March 23-27, 2003 (2003), ANYL-198.
    [25]. 回寶珩,”新式微型細胞計數器之設計、製作及應用”,國立成功大學工程科學系碩士班碩士論文,民國九十二年六月。
    [26]. Tzong-Shyng Leu, and Hung-Ying Chen, “Design and simulation of continuous dielectrophoretic flow sorters,” Microfluidics and Nanofluidics, Vol.1, No.4, pp.328-335, October 2005.
    [27]. 網路資料,http://www.gct.ntou.edu.tw/Lab/aiwww/neural.html
    [28]. 網路資料,http://pesty.yichi.org/blog/category/基因演算法
    [29]. Leon Xu, and Tommi Reinikainen, and Bo-Ping Wang “A simulation-based multi-objective design optimization of electronic packages under thermal cycling and bending”, Microelectronics Reliability, Vol. 44, No. 12, pp. 1977-1983, December 2004
    [30]. Bo-Ping Wang, “Parameter optimization in multiquadric response surface approximations,” Struct Multidisc Optim 26, pp. 219-223, 2004.
    [31]. ESI US R&D, Inc, ”CFD-ACE+TM V2004 User’s Manual,” Vol. 1, May 2004
    [32]. ESI US R&D, Inc, ”CFD-ACE+TM V2004 User’s Manual,” Vol. 2, May 2004
    [33]. ESI US R&D, Inc, ”CFD-ACE+TM V2004 Modules Manual,” Vol. 1, May 2004
    [34]. ESI US R&D, Inc, ”CFD-ACE+TM V2004 Modules Manual,” Vol. 2, May 2004

    下載圖示 校內:2007-08-30公開
    校外:2007-08-30公開
    QR CODE