| 研究生: |
江亦婷 Chiang, Yi-Ting |
|---|---|
| 論文名稱: |
黑質腦區及腹側被蓋腦區中微小膠細胞活化程度和多巴胺神經元數目之比較 Comparative analysis of microglia activation and dopaminergic neuron loss between substantia nigra and ventral tegmental area |
| 指導教授: |
郭余民
Kuo, Yu-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 微小膠細胞 、多巴胺神經元 、黑質 、腹側被蓋腦區 |
| 外文關鍵詞: | microglia, dopaminergic neuron, substantia nigra, ventral tegmental area |
| 相關次數: | 點閱:108 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在中樞神經系統中,多巴胺神經元主要分佈於中腦腹側被蓋腦區及黑質腦區中。中腦黑質腦區多巴胺神經元的數目會隨著年紀增加而減少,但此一老化現象在腹側被蓋腦區則仍不清楚。先前的文獻指出,多巴胺神經元對微小膠細胞的活化及其活化後釋放的發炎相關物質具高敏感性。而且,老化已知會增加微小膠細胞的活化程度。本研究的目的是比較老化或發炎,對黑質腦區及腹側被蓋腦區中,微小膠細胞活化程度和多巴胺神經元數目之影響。我們以免疫組織化學法對多巴胺神經元和微小膠細胞進行染色,以計數其數目和量測形態之變化。在老化的實驗部分,我們比較3、6、9、12個月大的公小鼠,發現黑質腦區中微小膠細胞的密度和活化程度,隨年齡增加而增加,而多巴胺神經元的數目則隨之減少。此現象在腹側被蓋腦區則不顯著。接著,我們針對3個月大的小鼠進行分析,發現黑質腦區的微小膠細胞分支數明顯多於腹側被蓋區。於是我們進一步比較新生小鼠黑質腦區和腹側被蓋區的微小膠細胞,結果發現兩腦區微小膠細胞的密度和活化程度並無不同。顯示黑質腦區在出生後,微小膠細胞的密度會逐漸升高。在發炎的實驗部分,我們分別比較不同的注射位置(腹腔或腦內)、不同的脂多醣濃度(0.15或1毫克/公斤)、不同的犧牲時間(3或24小時),對微小膠細胞活化程度和多巴胺神經元數目之影響。腹腔注射的結果顯示,黑質腦區的微小膠細胞的密度和活化程度,在兩種脂多醣濃度的刺激下,都比腹側被蓋區高。在脂多醣注射24小時後,黑質腦區多巴胺神經元數目減少的情形,比腹側被蓋區更為顯著。腦內注射的結果顯示,脂多醣直接注射於黑質腦區3小時後,所誘發的微小膠細胞個別活化程度,比直接注射於腹側被蓋區高;黑質腦區多巴胺神經元減少的數目,也較腹側被蓋區顯著。腦內注射脂多醣24小時後,在黑質腦區和腹側被蓋區均造成微小膠細胞和多巴胺神經元非常嚴重的死亡,所以無法準確定量。總結本研究,黑質腦區中多巴胺神經元的數目,會隨著老化而下降,但是此一現象在腹側被蓋腦區則不明顯。這可能是因為黑質腦區中微小膠細胞的密度較高,造成區域內的發炎反應較大。但是,黑質腦區中微小膠細胞的密度於出生後兩天時,跟腹側被蓋腦區比較並無不同。但是,為何出生後微小膠細胞的密度在黑質腦區快速倍增,而在腹側被蓋腦區只有緩慢增加則有待後續實驗釐清。
In the central nervous system, dopaminergic (DA) neurons are mainly located in the ventral tegmental area (VTA) and substantia nigra (SN). It has been known that the numbers of DA neuron in the SN decrease with age. Whether similar event occurs in the VTA remains unknown. Previous studies demonstrated that DA neurons are highly susceptible to microglial activation and pro-inflammatory cytotoxic factors. Therefore, the objective of this study was to compare the effects of aging and inflammation on the levels of microglia activation and DA number in the VTA and SN. Microglia were labeled immunohistochemically by Iba-1 antibodies, whereas DA neurons were labeled by tyrosine hydroxylase antibodies in mice with different ages (3, 6, 9, 12 months). The results showed that the age-associated DA neuron loss was only evident in the SN, but not in the VTA. The degrees of age-associated microglia activation were more profound in the SN than in the VTA. Furthermore, microglia of the SN had more processes than that in the VTA at the age of 3 months. Moreover, the densities of microglia at 2-day-old mice were similar between two brain regions and largely increased after birth in the SN. To compare the responses of microglia activation induced by LPS, LPS was either injected to peritoneum (1 mg/kg, 0.15 mg/kg) or directly to the SN and VTA (0.25 µl, 25 µg/ml) of 2-month-old male C57BL/6 mice. All groups were sacrificed at either 3h or 24h after the injection. The results showed that the densities and degrees of activation of microglia in the SN were higher than those of VTA at 3 h and 24 h after intraperitoneal LPS injection. Meanwhile, the numbers of DA neuron loss were larger in the SN than that of VTA at 24 h after intraperitoneal LPS injection. Similarly, 3 h after LPS injection to the SN, the degrees of microglia responses and DA neuron loss were more pronounced than those of the VTA. Because LPS induced severe cell death in both brain regions 24 h after injection, we failed to compare the numbers and morphological changes of microglia and DA neuron. In conclusion, the numbers of DA neurons in the SN decreases as age increased; while such changes are less significant in the VTA. We suggest that the differential responses are caused by different microglia densities in these two brain regions; the higher microglia density will result in higher inflammatory reactions. Interestingly, the microglia densities of SN and VTA are similar at 2 d after birth. The reasons for the different degrees of change in microglia density in these two brain regions await future characterization.
1. Schultz, W. (2007) Multiple dopamine functions at different time courses. Annual review of neuroscience 30, 259-288
2. Bjorklund, A., and Dunnett, S. B. (2007) Dopamine neuron systems in the brain: an update. Trends in neurosciences 30, 194-202
3. Fuxe, K. (1965) Evidence for the existence of monoamine neurons in the central nervous system. Zeitschrift für Zellforschung 65, 573-596
4. Fitzgerald, M. J. T., and Folan-Curran, J. (2002) Clinical neuroanatomy and related neuroscience, Saunders
5. Bjorklund, A., and Dunnett, S. B. (2007) Fifty years of dopamine research. Trends in neurosciences 30, 185-187
6. Sulzer, D. (2007) Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease. Trends in neurosciences 30, 244-250
7. German, D. C., and Manaye, K. F. (1993) Midbrain dopaminergic neurons (nuclei A8, A9, and A10): three-dimensional reconstruction in the rat. The Journal of comparative neurology 331, 297-309
8. Bogerts, B., Hantsch, J., and Herzer, M. (1983) A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, Parkinson patients, and schizophrenics. Biological psychiatry 18, 951-969
9. Nakamura, Y. (2002) Regulating factors for microglial activation. Biological & pharmaceutical bulletin 25, 945-953
10. Orr, C. F., Rowe, D. B., and Halliday, G. M. (2002) An inflammatory review of Parkinson's disease. Progress in neurobiology 68, 325-340
11. Ransohoff, R. M., and Perry, V. H. (2009) Microglial physiology: unique stimuli, specialized responses. Annual review of immunology 27, 119-145
12. C.F. Orra, D. B. R. a. G. M. H. (2002) An inflammatory review of Parkinson’s disease. Progress in neurobiology 68, 325–340
13. Jack, C. S., Arbour, N., Manusow, J., Montgrain, V., Blain, M., McCrea, E., Shapiro, A., and Antel, J. P. (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. Journal of immunology 175, 4320-4330
14. Graeber, M. B., and Streit, W. J. (2010) Microglia: biology and pathology. Acta neuropathologica 119, 89-105
15. McGeer, P. L., and McGeer, E. G. (2004) Inflammation and neurodegeneration in Parkinson's disease. Parkinsonism & related disorders 10 Suppl 1, S3-7
16. Kim, S. U., and de Vellis, J. (2005) Microglia in health and disease. Journal of neuroscience research 81, 302-313
17. Lee, J. K., Tran, T., and Tansey, M. G. (2009) Neuroinflammation in Parkinson's disease. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology 4, 419-429
18. Smith, J. A., Das, A., Ray, S. K., and Banik, N. L. (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87, 10-20
19. Ouchi, Y., Yoshikawa, E., Sekine, Y., Futatsubashi, M., Kanno, T., Ogusu, T., and Torizuka, T. (2005) Microglial activation and dopamine terminal loss in early Parkinson's disease. Annals of neurology 57, 168-175
20. Liu, B., Gao, H. M., and Hong, J. S. (2003) Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation. Environ Health Perspect 111, 1065-1073
21. Kim, W. G., Mohney, R. P., Wilson, B., Jeohn, G. H., Liu, B., and Hong, J. S. (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. The Journal of neuroscience : the official journal of the Society for Neuroscience 20, 6309-6316
22. D'Mello, C., Le, T., and Swain, M. G. (2009) Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. The Journal of neuroscience : the official journal of the Society for Neuroscience 29, 2089-2102
23. Ji, K. A., Eu, M. Y., Kang, S. H., Gwag, B. J., Jou, I., and Joe, E. H. (2008) Differential neutrophil infiltration contributes to regional differences in brain inflammation in the substantia nigra pars compacta and cortex. Glia 56, 1039-1047
24. Wu, S. Y., Wang, T. F., Yu, L., Jen, C. J., Chuang, J. I., Wu, F. S., Wu, C. W., and Kuo, Y. M. (2011) Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain, behavior, and immunity 25, 135-146
25. Qin, L., Wu, X., Block, M. L., Liu, Y., Breese, G. R., Hong, J. S., Knapp, D. J., and Crews, F. T. (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55, 453-462
26. Bas, J., Calopa, M., Mestre, M., Mollevi, D. G., Cutillas, B., Ambrosio, S., and Buendia, E. (2001) Lymphocyte populations in Parkinson's disease and in rat models of parkinsonism. Journal of neuroimmunology 113, 146-152
27. Choi, D. Y., Zhang, J., and Bing, G. (2010) Aging enhances the neuroinflammatory response and alpha-synuclein nitration in rats. Neurobiology of aging 31, 1649-1653
28. Sheffield, L. G., and Berman, N. E. (1998) Microglial expression of MHC class II increases in normal aging of nonhuman primates. Neurobiology of aging 19, 47-55
29. Schuitemaker, A., van der Doef, T. F., Boellaard, R., van der Flier, W. M., Yaqub, M., Windhorst, A. D., Barkhof, F., Jonker, C., Kloet, R. W., Lammertsma, A. A., Scheltens, P., and van Berckel, B. N. (2012) Microglial activation in healthy aging. Neurobiology of aging 33, 1067-1072
30. Pedersen, B. K., Steensberg, A., and Schjerling, P. (2001) Exercise and interleukin-6. Current opinion in hematology 8, 137-141
31. Perry, V. H. (2004) The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain, behavior, and immunity 18, 407-413
32. Paxinos, G. (2007) Atlas of the Developing Mouse Brain: At E17. 5, PO, and, Academic press
33. Paxinos, G., and Franklin, K. B. (2004) The mouse brain in stereotaxic coordinates, Gulf Professional Publishing
34. Dong, H. W. (2008) The Allen reference atlas: A digital color brain atlas of the C57Bl/6J male mouse, John Wiley & Sons Inc
35. Sholl, D. A. (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. Journal of anatomy 87, 387-406
36. Schapira, A. H., and Jenner, P. (2011) Etiology and pathogenesis of Parkinson's disease. Movement disorders : official journal of the Movement Disorder Society 26, 1049-1055
37. Schapira, A. H., and Gegg, M. (2011) Mitochondrial contribution to Parkinson's disease pathogenesis. Parkinson's disease 2011, 159160
38. Wu, D. C., Teismann, P., Tieu, K., Vila, M., Jackson-Lewis, V., Ischiropoulos, H., and Przedborski, S. (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America 100, 6145-6150
39. Sanchez, H. L., Silva, L. B., Portiansky, E. L., Herenu, C. B., Goya, R. G., and Zuccolilli, G. O. (2008) Dopaminergic mesencephalic systems and behavioral performance in very old rats. Neuroscience 154, 1598-1606
40. Siddiqi, Z., Kemper, T. L., and Killiany, R. (1999) Age-related neuronal loss from the substantia nigra-pars compacta and ventral tegmental area of the rhesus monkey. Journal of neuropathology and experimental neurology 58, 959-971
41. Liu, B., Gao, H. M., Wang, J. Y., Jeohn, G. H., Cooper, C. L., and Hong, J. S. (2002) Role of nitric oxide in inflammation-mediated neurodegeneration. Annals of the New York Academy of Sciences 962, 318-331
42. Sharaf, A., Krieglstein, K., and Spittau, B. (2013) Distribution of microglia in the postnatal murine nigrostriatal system. Cell and tissue research 351, 373-382