簡易檢索 / 詳目顯示

研究生: 葉宇祥
Yeh, Yu-Hsiang
論文名稱: 三維光學系統的近軸光線追蹤矩陣
Paraxial Raytracing Matrices for Three Dimensional Optical Systems
指導教授: 林昌進
Lin, Psang-Dain
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 65
中文關鍵詞: 近軸光線追蹤泰勒級數展開非軸對稱光學系統
外文關鍵詞: Paraxial raytracing, Taylor series expansion, Non-axisymmetric optical systems
相關次數: 點閱:139下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光線追蹤對於光學系統的設計與分析極為重要,其主要可分為歪斜光線追蹤與近軸光線追蹤方法。本文中所探討的近軸光線追蹤是用於處理光線極為接近光學系統中心軸的光線傳播,在許多光學教科書的特定章節中,都包含有關使用基於2x2 ABCD 矩陣的傳統近軸光線追踪方法,對軸對稱系統進行初始的光學設計。然而,這些傳統的近軸光線追蹤方法僅適用於軸對稱的光學系統。本論文通過使用一階泰勒級數展開來近似歪斜光線追蹤方程式,獲得一組適用於三維非軸對稱系統的近軸光線追蹤矩陣。通過在軸對稱與非軸對光學系統中的數值驗證結果顯示,本文提出的方法能夠準確地追蹤光線位置,為像差分析奠定基礎。

    Many optical textbooks include specific chapters on the use of conventional paraxial raytracing techniques based on ABCD matrices to obtain initial estimates of the optical systems in the design stage of axis-symmetrical systems. However, these conventional paraxial raytracing techniques are valid only for systems having a common straight-line optical axis. This thesis circumvents this limitation by using the first-order Taylor series expansion to approximate the skew-ray tracing equations and obtain a set of matrices for paraxial raytracing. The numerical results show that the proposed method can determine the rays accurately, and consequently can lay the foundation of aberration explorations.

    第一章緒論 1 1-1 2×2近軸光線追蹤 1 1-2 稜鏡擴束器的轉移矩陣 6 1-3 三維近軸光線追蹤 7 1-4 文獻回顧 9 1-5 本文架構 10 第二章 非軸對稱系統的近軸光線追蹤 11 2-1 光線的定義 11 2-2 近軸光學的符號 12 2-3 光線的泰勒級數展開 14 2-4 直線傳播矩陣 15 2-5 數值驗證 17 2-6 小結 19 第三章 近軸光學的平面邊界折射與反射矩陣 20 3-1 光線的折射與反射 20 3-2 折射光線的折射矩陣 22 3-3 反射光線的反射矩陣 25 3-4 數值驗證 26 第四章 近軸光學的球面邊界折射與反射矩陣 31 4-1光線在球面邊界的折射與反射 31 4-2 光線在球面邊界的折射與反射矩陣 35 4-3小結 41 第五章 近軸光學的驗證 42 5-1 軸對稱系統 42 5-2 非軸對稱系統 53 5-3 小結 61 第六章 結論與未來展望 62 6-1 結論 62 6-2未來展望 63 第七章 參考文獻 64

    [1]https://scienceworld.wolfram.com/physics/ParaxialApproximation.htm
    [2] Hecht, E. Optics, 3rd ed. Reading, 1998
    [3] Schroeder, D. J. Astronomical Optics, 2nd ed. San Diego, 1999
    [4] F.J. Duarte, "Transmission efficiency in achromatic nonorthogonal multiple-prism laser beam expanders", 1989.
    [5] F.J. Duarte and J.A. Piper, "Dispersion theory of multiple-prism beam expanders for pulsed dye lasers," 1982.
    [6] F.J. Duarte, "Ray transfer matrix analysis of multiple-prism dye laser oscillators ," Opt Quant Electron 21, 47–54 (1989)
    [7] F.J. Duarte, " Multiple-prism dispersion and 4×4 ray transfer matrices," Opt Quant Electron 24, 49–53 (1992)
    [8] Psang Dain Lin, Chi-Kuen Sung. " Matrix-based paraxial skew ray-tracing in 3D systems with non-coplanar optical axis ," 2005
    [9] R. S. Longhurst , "Geometrical and Physical Optics," Longmans Green, pp.42-44, 1964.
    [10] W. Brouwer, E. L. O’Neill, and A. Walther, “The Role of Eikonal and Matrix Methods in Contrast Transfer Calculations,” Appl. Opt. 2(12), 1239–1246 (1963)
    [11] Bo Chen and Alois M. Herkommer , "High order surface aberration contributions from phase space analysis of differential rays," Opt. Express 24, 5934-5945 (2016)
    [12] M. Testorf, B. Hennelly, and J. Ojeda-Castaneda, Phase-Space Optics (McGraw-Hill, 2010).
    [13] S. H. Brewer, " Surface contribution algorithms for analysis and optimization," “J. Opt. Soc. Am. 66(1), 8–13 (1976).
    [14] Niamh M. Fitzgerald, Christopher Dainty, and Alexander V. Goncharov, "Extending the depth of field with chromatic aberration for dual-wavelength iris imaging," Opt. Express 25, 31696-31707 (2017)
    [15] Jong-Ung Lee, "New Design Method of Stable Lens System Against Chromatic Variation Based on Paraxial Ray Tracing," Curr. Opt. Photon. 4, 23-30 (2020)
    [16] Psang Dain Lin, "Chi-Kuen Sung. Camera calibration based on paraxial
    raytracing." Appl. Phys. B 94, 307–317 (2009)
    [17]宋旗桂。應用歪斜光線追蹤法及近軸光線追蹤法於照相機校正。成功大學機械工程學系博士學位論文,2007。
    [18]陳彥碩。應用近軸光線追蹤法與歪斜光線追蹤法分析雷射震盪腔內的光線穩定性。成功大學機械工程學系碩士學位論文,2009。
    [19] Psang Dain Lin, "Advanced Geometrical Optics."Singapore:Springer , 2017.

    下載圖示 校內:2022-07-26公開
    校外:2022-07-26公開
    QR CODE