| 研究生: |
彭馨寬 peng, shin-kuang |
|---|---|
| 論文名稱: |
不同加工條件下劃切現象之分析 The Analysis of Scribing Phenomenon under Different Cutting Parameters |
| 指導教授: |
王俊志
Wang, J-J Junz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 比切削能 、摩擦係數 、後傾角 、劃切 |
| 外文關鍵詞: | friction coefficient, specific energy, rake angle, scribing |
| 相關次數: | 點閱:76 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討劃切製程之刀具幾何、後傾角、材料與切削速度對劃切力、比切削能和表面形貌的影響。
首先分析後傾角對刀具切入幾何的影響,在同樣切深下不同後傾角影響刀具接觸材料的面積造成垂直比切削係數隨後傾角改變。並且由實驗觀察到在稜線擠壓劃切,後傾角越小,比切削能越大;刀面推刮劃切時,後傾角越小時,比切削能則越小。
分離切削力中的摩擦力後,比切削能對後傾角的變化趨勢仍然與未分離前相同。經由無摩擦影響的比切削能可觀察到在劃切延性材料時低切深有較高比切削能的尺寸效應,在劃切硬脆材料時因切削機制轉換造成比切削能有降低的趨勢。由實驗的摩擦係數與刀具接觸材料的面積可得到接觸面積越小,摩擦係數越低,並依此來判斷最佳的加工後傾角。並觀察到隨著切削速度提昇,比切削能有降低的趨勢且溝槽幾何較為完整。
This thesis will discuss the influences of scribing force, specific energy, and surface geometry on the tool geometry, rake angle, material, and cutting velocity of scribing process.
The influences of cutting geometry on the rake angle are analyzed to observe the variation of the area contacted between tool flank and machined surface for different rake angles in the same cutting depth, and radial cutting coefficient changed with the rake angle. The results of experiments show that scribing leading by edge, the smaller the rake angle is, the greater the specific energy is. While scribing leading by face, the smaller the rake angle is, the smaller the specific energy is.
After separating friction from cutting force, the variation trend of the rake angle and the specific energy which does not consider friction is the same with the case that friction is considered. By observing the specific energy which does not consider friction, size effect makes higher specific energy in lower cutting depth in scribing ductile material. While scribing brittle material, the transformation of cutting mechanism makes the specific energy become lower. From relationship between friction coefficient and the material area contacted with tool, the smaller the area is, the lower the friction coefficient is. This phenomenon can be used to decide the optimal rake angle of cut. It also can be observed that the promotion of the cutting velocity makes specific energy is reduced and groove geometry is more complete.
1. E. Budak, Y. Altintas and E. J. A. Armarego, “Prediction of Milling Force Coefficients from Orthogonal Cutting Data,” Transaction of ASME, 118, pp. 216-224, 1996.
2. T. Schaller, L. Bohn, J. Mayer and K. Schubert, ” Microstructure groove with a width of less than 50μm cut with ground hard metal micro end mills,” Precision Engineering, 23, pp. 229-235, 1999.
3. N. Moronuki, Y. Liang and Y. Furukawa, ”Experiments on the effect of material properties on microcutting processes,” Butterworth-Heinemann, 16, pp. 124-131, 1994.
4. C. Friedrich and M, Vasile, “ Development of the micro milling process for high aspect ratio microstructures,“ Journal of Mechanical Engineering Material Science, 5(1), pp.33-38, 1996.
5. Z. Lu and T. Yoneyama, “Micro cutting in the micro lathe turning system,” International Journal of Machine Tools & Manufacture, 39, pp.1171-1193, 1999.
6. N. Ikawa, R. Fonaldson, R. Komanduri, W. Konig, P. Mckeown and T. Moriwaki,“ Ultraprecision metal cutting—The past, the present, and the future,“ Annals of the CIRP, 40(2), pp. 587–595, 1991
7. http://www.compoundsemiconductor.net/articles/magazine
/10/3/4/1
8. M. Zhou, B. K. A. Ngoi, Z. W. Zhong and C. S. Chin, “Brittle-Ductile Transition in Diamond Cutting of Silicon Single Crystals,“ materials and manufacturing processes, 16(4), pp. 447-460, 2001.
9. D. A. Lucca, P. Chou and R. J. Hocken, “Effect of Tool Edge Geometry on the Nanometric Cutting of Ge,” Annals of the CIRP, 47, pp. 475-478, 1998.
10. R. A. Allaire and J. C. Lapp, “Scoring of AMLCD Glass,“ Corning Incorporated, Technical Information Paper, 2001.
11. 陳貴榮, 陳孟群, 陳志明等, “影響切割裂片品質的因素探討, ”機械工業雜誌, 258, pp. 236-247, 2004.
12. W. J. Eneres, R. E. DeVor and S. G. Kapoor, ”A Dual-Mechanism Approach to the Prediction of Machining Forces,“ ASME Journal of Engineering for Industry, 117, pp.1-22, 1975.
13. R. Komanduri, N. Chandrasekaran and L. M. Raff, “Effect of Tool Geometry in Nanometric Cutting: A Molecular Dynamics Simulation Approach,“ wear, 219, pp. 84-97, 1998.
14. V. Weiss, “Application of Fracture Mechanical to Design,” Sagamore Army Materials Research Conference Proceedings, pp.1-22, 1975.
15. T. G. Bifano, T.A. Dow and R. D. Scattergood, “Ductile-Regime Grinding, Anew Technology for Machining Brittle Materials,” ASME Journal of Engineering for Industry, Vol.113, pp.184-189, 1991.
16. F. Z. Fang and L .J. Chen, “Ultra-Precision Cutting for ZKN7 Glass,” Annals of the CIRP, 49, pp.17-20, 2000.
17. 陳啟宗, “機械性質與加工條件對硬脆材料劃切加工之影響,” 國立成功大學機械工程研究所, pp.57-65, 2004.
18. J. J. Wang and Y. Y. Liao, “Estimating Critical Depth of Cut and Tool Factor for a Mechanical Scribing Process,” Journal of the Chinese Society of Mechanical Engineers, 27, pp. 153-157, 2006.