| 研究生: |
范姜孟含 FangChiang, Meng-Han |
|---|---|
| 論文名稱: |
改良式矽模具開發與其在逆壓印技術上之應用 The development of improved silicon mold and its application on reversal imprinting process |
| 指導教授: |
洪昭南
Hong, Chau-Nan Franklin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 148 |
| 中文關鍵詞: | 矽模具 、奈米壓印 |
| 外文關鍵詞: | nanoimprint, silicon mold |
| 相關次數: | 點閱:75 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米壓印技術為一種新穎技術,其優勢為可取代傳統光學微影製程,大面積的複製圖案,甚至壓印至數奈米之線寬,是極具開發價值的技術。
本論文中,主要分為三部分作為探討:其一為自組裝分子之選用應用於製備模具脫模層。藉由液相方式掺混不同體積比之自組裝分子,且以量測靜態接觸角之結果,進一步發展出選擇性填入無溶劑阻劑之模具。第二部份則是利用逆式壓印技術轉印圖形及製作3D圖案。將前一部分所製備出含有不同種類矽烷分子之模具,以逆式壓印技術將無溶劑的阻劑,藉由旋轉塗佈方式填入。因矽烷分子種類與製備方式不同、故存在其差異性,而使阻劑選擇性填入凹槽,不沾附於凸層,進而製作出無殘餘層的圖案化阻劑。此技術之優勢為選用的是無溶劑阻劑,因此不會因溶劑揮發而產生的嚴重收縮現象,且不需要操作在高溫與高施壓的環境下,可增加後續蝕刻的成功率,且可直接疊印於非平整表面,並製作出3D立體結構圖案的阻劑。
第三部份是以濕式蝕刻方式製備矽模具。實驗結果發現在蝕刻液(硝酸:氫氟酸:醋酸= 3:5:3)添加10 wt%螯合劑(EAcAc)時,有停止蝕刻的現象;但當以相同比例在紫外光曝照下,卻有蝕刻現象發生。顯示加入螯合劑的確可控制蝕刻進行與否。最後,雖然蝕刻結果未達理想,但也發展出另一種控制啟動濕蝕刻的機制。
Nanoimprinting is a cutting-edge technology that offers a new approach to photolithography, with the potential to produce imprints far superior to those that use more traditional methods. The process is capable of imprinting to nano-scale lines width for the large area.
This thesis is divided into three parts: Firstly, a self-assembled mono-layer is chosen and applied to make an anti-stick surface mold. Three different kinds of silane SAM including different volume ratio is mixed by solution method and measure static contact angle static of these samples above. According to the result, A simple process and a optional filled non-solvent resist mold is developed. Secondly, pattern can be transferred to substrates and 3-dimension image is fabricated by reversal imprinting. By means of spin-coating by reversal imprinting technique, epoxy resin and photoresist fills into concavity. Due to the properties of every silane SAM and making method are different, the epoxy resin is stuff into concavity optionally, making a patterned resist without residual layer. The advantage of this technique is that using a non-solvent resist won’t result in shrinkage due to solvent evaporation. It reduces many of the variables thus adding to the probability of a successful etching process. Ultimately, 3-dimensional structure resist can be fabricated on a non-palar surface without removing residual layer.
The thesis will also discuss how to make a silicon mold by wet etching. The result shows that the etching process will be stopped when 10 wt% chelating agent( EAcAc) is added to the etching agent( HNO3:HF:CH3COOH = 3:5:3). However, if the process above is carried out under UV light, the result is reversed. It shows the chelating agent is capable of controlling the etching. Although the experiment results are not good enough, it develops another kind of switch of the wet etching action.
1. G. M. Whitesides, J. C. Love, Scientific American, 39 (2001)
2. L. Jay Guo, J. Phys. D: Appl. Phys. 37, R123 (2004)
3. L. Jay Guo, Proc. SPIE, 53, 5734 (2005)
4. 粘金重,電子與材料雜誌,19期 (2005)
5. 陳守仁,吳兆棋,柯有倫,陳來勝,機械工業雜誌,279期
(2006)
6. S. Y. Chou, P. R. Krauss, P. J. Restrom, Appl. Phys. Lett. 67, 3114 (1995)
7. S.Y. Chou, P.R. Krauss, P. J. Restrom, J. Vac. Sci. Technol.B, 14, 4129 (1996)
8. S. Y. Chou, P.R. Krauss, P. J. Restrom, Science, 272, 85 (1995)
9. S. Zankovych, T. Hoffmanm, J. Seekamp, J. U. Bruch, C. M. Sotomayor Torres, Nanotechnology, 12, 91 (2001)
10. S. Y. Chou, et al., J. Vac. Sci. Technol. A, 15,2897 (1997)
11. A. Kumar, G. M. Whitesides, Appl. Phys. Lett., 63, 2002 (1993)
12. Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, G. M. Whitesides, Science, 273, 347 (1996)
13. S. Johnson, D. J. Resnick, D. Mancini, K. Nordquist, W. J. Dauksher, K. Gehoski, J. H. Baker, L. Dues, A. Hooper, T. C. Bailey, J. G. Ekerdt, C. G. Willson, Microelectronic Eng., 221, 67 (2003)
14. R.W. Jaszewski , H. Schift , B. Schnyder, A. Schneuwly, P. Groning, Appl. Surf. Sci.,143, 301 (1999)
15. S. Y. Chou, C. Keimel, J. Gu, Nature, 417, 835 (2002)
16. L. A. Poter, H. C. Choi, J. M. Schmeltzer, A. E. Ribbe, L. C. C. Elliott, J. M. Buriak, Nano Lett., 2, 1369 (2002)
17. H. Zhang, S. W. Chung, C. A. Mirkin, IEEE Journal of Selected Topics in Quantum Electronics, 10, 43 (2003)
18. Douglas J. Resnick, S. V. Sreenivasan, C. Grant Willson, Materials Today (2005)
19. C. G. Willson, M. E. Colburn, United States Patent, 6, 334, 960 (2002)
20. P. Ruchhoefft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, J. C. Wolfe, C. G. Willson, J. Vac .Sci. Technol. B, 17, 2965 (1996)
21. M. Colburn, A. Grot, B. J. Chio, M. Amistoso, T. Bailey, S. V. Sreenivasan, J. G. Ekerdt, C. G. Willson, J. Vac .Sci. Technol. B, 19, 2162 (2001)
22. C. G.. Willson, et al., Proc. SPIE, 3676, 379 (1999)
23. S. C. Johnson, T. C. Bailey, M. D. Dickey, B. J. Smith, E. K. Kim, A. T. Jamieson, N. A. Stacey, J. G. Ekerdt, C. G. Willson, SPIE Microlithography Conference, (2003)
24. A. Kumar, G. M. Whitesides, Appl. Phys. Lett., 63, 2002 (1993)
25. I. McMackin, P. Schumaker, D. Babbs, J. Choi, W. Collison, S. V. Sreenivasan, N. Schumaker, M. Watts,R. Voisin, SPIE Microlithography Conference, (2003)
26. Y. N. Xia, M. Mrksich, E. Kim, G. M. Whitesides, J. Am. Chem. Soc., 117, 9576 (1995)
27. A. Kumar, H. A. Biebuyck, G. M. Whitesides, Langmuir, 10, 1498 (1994)
28. A. Carvalho, M. Geissler, H. Schmid, B. Michel, E. Delamarche, Langmuir, 18, 2406 (2002)
29. J. C. Love, D. B. Wolfe, M. L. Chabinyc, K. E. Paul, G. M. Whitesides, J. Am. Chem. Soc. 124, 1576 (2002)
30. T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, G. M. Whitesides, Langmuir, 18, 5314 (2002)
31. T. W. Odom, V. R. Thalladi, J. C. Love, G. M. Whitesides, J. Am. Chem. Soc., 124, 12112 (2002)
32. H. W. Li, B. V. O. Muir, G. Fichet, W. T. S. Huck, Langmuir, 19, 1963 (2003)
33. N. B. Larsen, H. Biebuyck, E. Delamarche, B. J. Michel, J. Am. Chem. Soc., 119, 3017 (1997)
34. N. J. Jeon, K. Finnie, K. Branshaw, R. G. Nuzzo, Langmuir, 13, 3382 (1997)
35. Y. Xin, D. Qin, G. M. Whitesides, Adv. Mater., 8, 1015 (1996)
36. X. Cheng, L. J. Guo, Microelectron. Eng.. 71, 288 (2004)
37. M. Otto, M. Bender, B. Hadam, B. Spangenberg, H. Kurz Microelectron. Eng. 57, 361 (2001)
38.C. Schuster, F. Reuther, A. Kolander, G. Gruetzner. Microelectron. Eng. 86, 722 (2009)
39.鄭貴元,陳佳盟,宋震國,周大鑫,楊文賢,機械工業雜誌,306期 (2008)
40. X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang,A. F. Yee, J. Vac. Sci. Technol. B, 20, 2872 (2002)
41. X. Y. Sun, L. Zhuang, W. Zhang, S. Y. Chou, J. Vac. Sci. Technol. B, 16, 3922 (1998)
42. L. R. Bao, X. Cheng, X. D. Huang, L. J. Guo, S. W. Pang, A. F. Yee, J. Vac. Sci. Technol. B, 20, 2881 (2002)
43. Xu. Yongan, Zhao. Wei, Y. L. Hong, Microelectron. Eng., 83, 542 (2006)
44. N. L. Jeon, K. R. Finnie, K. Branshaw, R. G. Nuzzo, Langmuir, 13, 3382 (1997)
45. L. R. Bao, L. Tan, X. D. Huang, Y. P. Kong, L. J. Guo, S. W. Pang, A. F. Yee J. Vac. Sci. Technol. B, 21, 2749 (2003)
46. M. Beck, IEEE-NANO, 2, 17 (2002)
47. J. B. Brzoska, I. Ben Azouz, F. Rondelez, Langmuir, 10, 4367
(1994)
48. R. Stephen, Wasserman, Yu-Tai Tao, M. George, Whitesides, Langmuir, 5, 1074 (1989)
49. R. Stephen, Wasserman, M. George, Whitesides, Ian M. Tidswel, Ben M. Ocko, Peter S. Pershan, John D. Axel, Langmuir, 111, 5852 (1989)
50. P. Silberzan, JL . LBger, D. AusserrB, J. J. Benattarll, Langmuir, 7 1647, (1991)
51. S. Brandriss, S. Margel, Langmuir, 9, 1232 (1991)
52. A. Ulman, Chem. Rev.,96, 1553 (1996)
53. D. Janssen, R. D. Palma, S. Verlaak, P. Heremans, W. Dehaen, The Solid Films, 515. 1433 (2006)
54. R. Banga, J. Yarwood, Langmuir, 11, 4393 (1995)
55. U. Srinivasan, M. R. Houston, T. Roger, H. Fellow, R. Maboudian, IEEE, 7, 1057 (1998)
56. M. J. Stevens, Langmuir, 15, 2773 (1999)
57. B. H. Kim, T. D. Chung, C. H. Oh, K. Chun, IEEE, 10, 33 (2001)
58. I. H. Sung, J. C. Yang, D. E. Kim, B. S. Shin, Wear, 255, 808 (2003)
59. T. Kasai, B. Bhushan, G. Kulik, L. Barbieri, P. Hoffmann, J. Vac. Sci. Technol.B, 23, 995 (2005)
60. O.P. Khatri, D. Devaprakasam, S.K. Biswas, Tribology Letters, 20, 235 (2005)
61. W. Hild, S. I. U. Ahmed, G. Hungenbach, M. Scherge, J.A. Schaefer, Tibotest, 12, 161 (2006)
62. Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, J. Koblitz, Journal of Micromechanics and Microengineering, 16, 2259 (2006)
63. J. Fréchette, R. Maboudian, C. Carraro, Journal of Microelectromechanical Systems, 15, 737 (2006)
64. M. E. McGovern, M. R. Krishna, Kallury, M. Thompson, Langmuir, 10, 3607 (1994)
65. B. C. Bunker, R. W. Carpick, R. A. Assink, M. L. Thomas, M. G. Hankins, J. A. Voigt, D. Sipola, M. P. de Boer, G. L. Gulley, Langmuir, 16, 7742 (2000)
66. David L. Angst, Gary W. Simmons, Langmuir, 7, 2236 (1991)
67. J. D. Le Grange, J. L. Markham, C. R. Kurkjian, Langmuir, 9, 1749 (1993)
68. M. R. Houston, R. T. Howe, R. Maboudian, J. Appl. Phys. 81, 3475 (1997)
69. G.Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, R. S. Williams, Langmuir, 21, 1158 (2005)
70. J. S. Park, A. N. Vo, D. Barriet, Y. S. Shon, T. R. Lee, Langmuir, 21, 2902 (2005)
71. S. Kim, K. Cho, J. E. Curry, Langmuir, 21, 8290 (2005)
72. D. K. fer, G. Witte, P. Cyganik, A. Terfort, C. Woll, J. Am. Chem. Soc., 128, 1723 (2006)
73. H. Kubota, Journal of Luminescence, 56, 87 (2000)
74. A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, IEEE J. Sel. Top. Quant., 10, 107 (2002)
75. 洪昭南,電漿反應器,化工技術,第三卷,第三期,124 (1995)
76. H. Yasuda, Plasma Polymerization, (1985).
77. J. R. Roth, Industrial Plasma Engineering-Volume, Institute of Physics Publishing, (1995)
78. S. J. Lee, B. G. Paik, G. B. Kim, Y. G. Jang, Jap. J. Appl. Physi., 45, 912 (2006)
79. http://www.face-kyowa.com/en/learning/learning1.html
80. 鄭總輝、陳振鑾、陳致源、鄭欽峰,工業材料雜誌,218期,80 (2005)
81. 王武敬、金帷國、楊瑋鈞,化工資訊與商情,27期 (2005)
82. H. Murase, T. Fujibayashi, Progress in Organic Coating, 31, 97 (1997)
83. M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Langmuir, 16, 5754 (2000)
84. S. M. Sze, G. Y. Chang, ULSI Technology, McGraw-Hill (1996)
85. 施敏、張俊彥,半導體元件與物理與製作技術,高立圖書公司,
(1996)
86. P. J. Holmes, The Electrochemistry of Semiconductors, page 329, Academic press, (1962)
87. W. Kern, RCA Rev., 39, 278 (1978)
88. P. Allonge, V. Costa-Kieling, H. Gerischer, J. Electrochem. Soc., 140, 1018 (1993)
89. J. M. Crishal, A. L. Harrington, J. Electrochem. Soc.,111,202 (1962)
90. R. M. Finne, D. L. Klein, J. Electrochem. Soc. 1967, 114, 965
91. A. Y. Fadeev, T. J. McCarthy, Langmuir, 16, 7268 (2000)
92. W. R. Ashurst, C. Carraro, R. Maboudian, IEEE, 3, 173 (2003)
93. A. Y. Fadeev, T. J. McCarthy, Langmuir, 16, 7268 (2003)
94. Johnson, R. E., Jr. Dettre, R. H. Adv. Chem. Ser. 43, 112 (1963)
95. W. Hu, B. Yang, C. Peng, S. W. Pang, J. Vac. Sci. Technaol. B, 24, 2225 (2006)
96. L. R. Bao, X. Cheng, X. D. Huang, L. J. Guo, S. W. Pang, A. F. Yee, J. Vac. Sci. Technaol. B, 20, 2881 (2002)
97. N. Kehagias, M. Zelsmann, C. M. Sotomayor Torres, K. Pfeiffer, G. Ahren, G. Gruetzner, J. Vac. Sci. Technol. B, 23, 2954 (2005)
98. M. Nakajima, T. Yoshikawa, K. Sogo, Y. Hirai, Microelectronic Engineering, 83, 876 (2006)
99. C. Peng, S. W. Pang, J. Vac. Sci. Technol. B, 24, 2968 (2006)
100. B. Yang, S. W. Pang, J. Vac. Sci. Technol. B, 24, 2085 (2006)
101. N Tohge, G. Zhao, Proc. SPIE, 3136, 176 (1997)
102. Y. Li, G. Zhao, W. Zhang, Y. Chen, J. Display technol., 2, 175 (2006)