簡易檢索 / 詳目顯示

研究生: 鄭名城
Jheng, Ming-Cheng
論文名稱: 400 MW脈衝功率系統之開發
Development of a 400 MW pulsed-power system
指導教授: 張博宇
Chang, Po-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 太空與電漿科學研究所
Institute of Space and Plasma Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 160
中文關鍵詞: 平行版電容庫脈衝功率系統軌道間隙開關多通道放電馬克斯機電漿噴流
外文關鍵詞: Parallel-plate capacitor bank, pulsed-power system, Rail gap switch, multichannel, Marx generator, plasma jet
相關次數: 點閱:140下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗正在建置使用平行板電容庫的脈衝功率系統(Pulsed-power system using parallel plate capacitor bank,簡稱PPCB)。平行板電容庫是使用兩個對稱的翼(Wing)的電容器所組成,目前已經建置了系統的一半,稱之南翼(South wing)。南翼的電容器使用5個並聯的一磚電容器(One-brick),每一磚電容器有0.5μF,所以共有2.5μF。目前電容器充電至20 kV儲存500 J的能量存去做測試。平行版電容庫使用低電感的軌道間隙開關(Rail-gap switch)作為主要開關,並由馬克斯機(Marx generator)產生的快速升降的高壓脈衝訊號來觸發軌道間隙開關。
    使軌道間隙開關產生多通道放電(Multichannel discharge)的觸發訊號需要有5 kV/ns的上升速度。我們使用多階觸發系統(Multistep-triggering system)中的三級馬克斯機(3-stage Marx generator)來產生所需要的高壓觸發源,其輸出上升(下降)速度為-7.7±1.4 kV/ns的-40 kV高壓脈衝訊號。
    南翼放電的量測結果經曲線擬合後得到的峰值電流為59.2 ± 0.7 kA、電流上升時間為1280 ± 10 ns、南翼總電感為265±2 nH(含53 nH負載)、軌道間隙開關的電感值為60 ± 20 nH、瞬時功率為363 MW,系統觸發訊號的延遲時間不準度(Jitter)為 11 ns,是小於電流上升時間的1%。也就是說,我們可以在1%的精度內同步即將完成的北翼和南翼。 因此,我們預計在不久的將來使用完整的PPCB時,可以提供峰值約為120 kA的脈衝電源。

    A pulsed-power system using parallel plate capacitor bank (PPCB) is being built. Parallel-plate capacitor bank is a symmetrical structure which has two wings of capacitors connected in parallel. Half of the PPCB has been built, called the south wing. The other one is called the north wing and will be built in near future. Each wing consists of 5-brick of capacitors connected in parallel where a single brick is formed by two 1-uF capacitors connected in series. Total capacitance of the south wing is 2.5 uF. Capacitors of south wing are charged to 20 kV storing 500 J of energy. The low-inductance rail-gap switch is used. The fast-rising high-voltage pulse signal generated by the Marx generator is used to trigger the rail-gap switch.
    To trigger the rail-gap switch forming the multichannel discharge, the fast trigger pulse with a rising speed > 5 kV/ns is needed. We use a 3-stage Marx generator in a multistep-triggering system to provide a high voltage trigger pulse with a falling speed of 7.7 ±1.4 kV/ns.
    We have tested the performance of the south wing. The curve-fitting results showed that the total inductance of the south wing was 265 ±2 nH (with a 53-nH load), the inductance of the rail-gap switch was 60 ±20 nH and the inductance of the one-brick capacitor was 120 ±30 nH. The south wing provided a peak current of 59.2 ±0.7 kA with a rising time of 1280 ±10 ns and power was 363 ±7 MW. The jitter of the peak current respect to the trigger pulse was only 11 ns, 1% of the rise time. Therefore, we can synchronize the north wing and the south wing within the accuracy of 1% once the north wing is also constructed. Therefore, we are expecting a peak current of ~120 kA when the full PPCB is built in the near future.

    摘要………………………………………………………………………..………..i Abstract…………………………………………………………………..………..ii 致謝……………………………………………………………………..………..iii Content…………………………………………………………………………..iv List of tables……………………………………………………………………vii List of figures……………………………………………………………………….ix Chapter 1 Introduction………………………………………………...…………1 1.1 Pulsed-power system….………………………………………………...…1 1.2 An application of the pulsed-power system……………………..…………2 1.3 Existing components in our laboratory………….....………………………3 1.3.1 The high voltage DC power supply………………….…………4 1.3.2 The trigger pulse generator………………………………….…5 1.3.3 Spark-gap switches…………………………………………….6 1.4 An application in our lab…..…………………………………….…………9 1.5 The goal……………………………………………………….…..……10 Chapter 2 The pulsed-power system using Parallel-plate Capacitor Bank…...14 2.1 The Parallel-Plate Capacitor Banks (PPCB)…………….………………..16 2.1.1 Dumped and divider resistors for PPCB……………………..…….20 2.1.2 Stands for PPCB…………………………..………………………25 2.1.3 Mylar films for the PPCB………………………….………………26 2.1.4 Ground fence……….………….………………….…………...….26 2.2 The south wing pulsed-power system…………………….………………27 Chapter 3 Compressed air systems……………………………………………29 3.1 Dry air using the compressed gas cylinder……….………………………29 3.2 A compressed gas system using a compressor………………….…………33 Chapter 4 Pneumatic high voltage relay………………………………………37 4.1 Requirements of relays………………...…………………………………37 4.2 Design of relays……….………….………………………………………39 4.2.1 The air cylinder holder…….………………………………………40 4.2.2 The rod of the pneumatic valve……………………………………41 4.2.3 The supporting frame………………………..……………………42 4.2.4 The spring supporting frame…….…………...……………………44 4.2.5 Operation of relays………………………………………………46 Chapter 5 Multistep triggering system…………………………………………47 5.1 Multistep triggering system…………………………………………47 5.1.1 The battery-powering trigger-pulse generator…………………48 5.2 The Marx generator…………………………………………………49 5.3 Optimization of the Marx generator…………………………………52 5.4 Experimental Results……………..…………………………………53 Chapter 6 The rail-gap switch testing…………………………………………59 6.1 Rail-gap switches……………………………………………………59 6.2 Experimental setup……………….…………………………………64 6.3 Analysis method………………………………………….…………67 6.4 Experimental Results………………………………………………69 Chapter 7 The south wing pulsed power system testing…………………..……74 7.1 The south wing………………………………………………………74 7.2 Experimental setup……………….…………………………………75 7.3 Analysis method……………………………….....………………….77 7.4 Jitter of the south wing………………………………………………80 7.5 Summaries………………………..…………………………………86 Chapter 8 Optimization of the south wing…………………..………………….87 8.1 Shorter electrodes for the rail gap switch………….…………………87 8.2 The design of the experiment…………….………………….………89 8.3 Data analysis…………….....………………….....………………….90 Chapter 9 The negative output of the south wing…….……..………………….94 9-1 The measurement method of the experiment…...….……..…………95 9-2 The negative output result…….…………………….……….………96 Chapter 10 Summary ……………………………..………………………..…….100 Bibliography……………………………………………………………………….103 Appendix……….…………………………………………………………………104 A1 Circuit diagram of the trigger pulse generator....…………104 A2 Drawings of the normally open (NO) relay………………………..105 A3 Drawings of the normally closed (NC) relay….….………………..123 A4 Drawings of Trigatron…………………………..…………………..140 A5 Drawings of the round electrode…...…………..…………………..148 A6 Operation of the pulsed-power system……………………….…..149 A7 Manufactures……………………………………………………....153 A8 Folder position……………………………………………..………155 A9 Picture of the discharge……………………..…….…..…………….157

    [1] Yasushi Hayashi, Plasma Sources Sci. Technol. 13 675 (2004)
    [2] Mei-Feng Huang. ‘’rust remover using small pulsed-power system’’. Master Thesis, July 2017.
    [3] Sheng-Hua Yang, Master Thesis, National Cheng Kung University (2018)
    [4] https://en.wikipedia.org/wiki/Paschen
    [5] Lucy-Ann McFadden and Torrence Johnson and Paul Weissman, ed., Encyclopedia of the Solar System, 2nd Ed. (Academic Press, 2006).
    [6] Northstar Research Corporation[6]
    [7] R.Verma etc., Rev. Sci. Instrum. 85, 095117 (2014)
    [8] Foundations of Pulsed Power Technology
    [9] https://www.eeweb.com/tools/wire-inductance

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE