簡易檢索 / 詳目顯示

研究生: 吳建彬
Wu, Jian-Bin
論文名稱: 厭氣阻板反應器串聯活性污泥系統處理養豬廢水
Treatment of Piggery Wastewater by a Combined Anaerobic Baffled Reactor-Activated Sludge Reactor System
指導教授: 黃汝賢
Huang, Ju-Sheng
林達昌
Lin, Ta-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 140
中文關鍵詞: 脫硝異營菌分率硝化自營菌分率顆粒特性模式驗證COD降解動力動力模式厭氣阻板反應器養豬廢水脫硝動力硝化動力活性污泥反應器
外文關鍵詞: granule characteristics, kinetic model, mass fraction of denitrifiers, mass fraction of nitrifiers, model validation, denitrification kinetics, activated sludge reactor, anaerobic baffled reactor, nitrification kinetics, piggery wastewater, COD degradation kinetics
相關次數: 點閱:218下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   為提昇傳統三段式養豬廢水處理系統(固液分離→厭氣處理→活性污泥處理)對COD及氮之去除效果,本研究採用厭氣阻板反應器(ABR)串聯活性污泥反應器(ASR)之系統處理養豬廢水(取自台糖虎山農場經固液分離機、兼氣塘(HRT = 2 d)處理後之廢水),並將ASR出流水迴流至前段ABR,此一系統不僅可讓前段ABR進行脫硝並厭氣降解進流水之有機物,亦可讓後段ASR進行好氧降解殘存之有機物及氨氮之硝化反應。在適宜之操作條件下(如ABR及ASR之水力停留時間、ASR出流水迴流比等),系統對養豬廢水(COD = 1930~2050 mg/L、TKN = 392~410 mg/L)有高達96.1%~97.3%之COD去除率、~100%之TKN去除率及53.2%~80.1%之TN去除率(與ASR出流水迴流比呈正相關)。
      本研究在忽略ABR質傳阻抗之假設條件下(由獨立批次反應器求得分散污泥與顆粒污泥之脫硝動力與COD降解動力參數值近乎相同獲得證實),推導出ABR串聯ASR系統之COD降解和硝化/脫硝動力模式,並以獨立批次實驗求得系統中ABR和ASR之生物降解動力參數,最後再以系統穩定狀態操作下之實驗數據驗證動力模式之適用性。
      根據脈衝式追蹤劑試驗結果,計算求得ABR之槽數(N)及dead space(試程1及試程2)分別為1.14、1.04及8.2%、13.5%。雖本研究使用之ABR設有三個隔間,惟N = 1.04~1.14之結果意謂著ABR之液相流況為趨向於完全混和之狀態。
      ABR內之污泥可有效達到顆粒化,污泥顆粒之體積分率平均粒徑範圍為0.84~1.71 mm,且各隔間污泥床下層之顆粒粒徑、污泥濃度及顆粒比重皆為最大,其次依序為污泥床中層、上層者,且第一個隔間之污泥顆粒粒徑皆明顯大於最後一個隔間者。依獨立批次實驗結果,ASR之硝化和COD降解反應、ABR之脫硝和COD降解反應以及強化培養(enrichment culture)之硝化、脫硝反應皆可用Monod型動力描述。經由獨立批次實驗之測定結果,系統中ABR之脫硝異營菌分率(fd)為0.65~0.93,系統中ASR之好氧異營菌分率(fn)則為0.42~0.71。
      將系統穩定狀態下之操作條件及水質、污泥濃度實驗數據依質量平衡計算,ASR內硝化自營菌之比硝化速率及好氧異營菌之比COD去除速率分別為0.15~0.47 mg TKN/mg VSS-d及0.32~0.43 mg COD/mg VSS-d;ABR內脫硝異營菌之比脫硝速率為0.041~0.052 mg NOx--N/mg VSS-d,ABR之比COD去除速率為0.24~0.30 mg COD/mg VSS-d;ABR之生物代謝產氣中N2和CH4之氣體組成分別為52.0%~97.2%和2.6~44.1%。
      此外,將系統之各項操作條件及生物動力參數值代入動力模式之模擬結果,ABR及ASR二者之出流水COD、TKN及NOx--N濃度模擬值皆與實驗值頗為相符,足證本研究提出之動力模式極適合用以預測ABR串聯活性污泥系統處理養豬廢水之出流水質。

      A combined anaerobic baffled reactor (ABR)–activated sludge reactor (ASR) system was used to treat piggery wastewater (pretreated by a solids-liquid separator followed by a facultative lagoon with an HRT of 2 days; COD = 1930 – 2050 mg/L, TKN = 392 – 410 mg/L). To operate the combined reactor system, the effluent from the rear ASR was recycled to the front ABR. Thus, the ABR could proceed with denitrification and methanogenesis (with the utilization of inflow organics). Meanwhile, the ASR could proceed with aerobic degradation of the remaining organics and ammonia nitrification. Under proper operating conditions of HRT, c, and Re, the combined reactor system could remove 96.1% – 97.3% of COD, ~100% of TKN and 53.2% –80.1% of TN.
      Neglecting the effect of mass transfer resistance on the overall reaction process (this assumption was also proven by independent batch experiments with the use of dispersed sludge and granular sludge), a kinetic model of substrate (COD) degradation and nitrification/denitrification in the combined reactor system is proposed. Independent batch experiments were carried out to determine most of the biological parameter values used in model simulation. In addition, all the experimental data obtained from the steady-state combined reactor system were used to validate the kinetic model.
      According to pulse perturbation tests, the calculated tank numbers (N) and dead space of the ABRs (Runs 1 and 2) were 1.14, 1.04 and 8.2%, 13.5%, respectively. Although the ABR used in this work was divided into three compartments, the tank numbers of 1.04 – 1.14 implied that the flow regime in the liquid phase of the ABR approached complete-mix.
      Sludge granulation occurred in the ABRs; the average granule diameter (volume fraction basis) ranged from 0.84 to 1.71 mm, and the granule diameter, biomass concentration and sp. gr. of the granule in the lower-part of the sludge-bed zone was the largest, the middle-part of the sludge-bed zone was the next and, the upper-part of the sludge-bed zone was the smallest; the three parameter values measured in the first compartment were significantly larger than those measured in the last compartment. From independent batch experiments, nitrification and substrate utilization in the ASR, denitrification and substrate utilization in the ABR, and nitrification and denitrification with enrichment culture followed Monod-type kinetics. From independent batch experiments, the estimated mass fractions of denitrifiers in the ABRs (fd) and the mass fractions of nitrifiers in the ASRs (fn) were 0.65 – 0.93 and 0.42 - 0.71, respectively.
      According to mass-balance calculations, the specific nitrification rate and the specific substrate utilization rate in the ASRs are 0.15 – 0.47 mg TKN/mg VSS-d and 0.32 – 0.43 mg COD/mg VSS-d, respectively; while the specific denitrification rate and the specific substrate utilization rate in the ABRs are 0.041 – 0.052 mg NOx--N /mg VSS-d and 0.24 – 0.30 mg COD/mg VSS-d, respectively. The biogas contents N2 and CH4 monitored in the ABRs were 52.0% – 97.2% and 2.6% – 44.1%, respectively.
      From the simulated results of the proposed model, the calculated residual concentrations of COD, TKN, and TN in the ABRs and ASRs were in good agreement with the experimental results; the calculated COD, TKN, and TN removal efficiencies of the combined reactor system were in good agreement with the experimental results. Accordingly, the proposed kinetic model can be appropriately used to predict treatment performance of the combined reactor system.

    中文摘要...............................................................I 英文摘要............................................................ III 目 錄.................................................................VI 圖 目 錄.............................................................XII 表 目 錄............................................................ XIV 符號說明............................................................ XVI 第一章 緒 論...........................................................1 1–1 研究動機..........................................................1 1–2 研究目的..........................................................2 第二章 文獻回顧........................................................4 2–1 養豬廢水之污染物特性及處理法......................................4 2-1-1 養豬廢水之組成與水質特性.........................................4 2-1-2 養豬廢水之處理法.................................................4 2–2 氮的型態及其處理方法..............................................7 2-2-1 硝化作用及其影響因素.............................................7 2-2-2 脫硝作用及其影響因素........................................... 11 2–3 分離污泥型硝化/脫硝系統......................................... 15 2–4 厭氣代謝反應.................................................... 17 2-4-1 厭氣代謝反應機制............................................... 17 2-4-2 脫硝菌與厭氣菌之共生關係....................................... 19 2-4-3 影響厭氣生物程序穩定性之因素................................... 20 2–5 厭氣阻板反應器(ABR)概說....................................... 24 2-5-1 發展與應用..................................................... 26 2-5-2 水動力學特性................................................... 28 2-5-3 生物固體物截留能力............................................. 30 2-5-4 厭氣處理性能................................................... 31 2–6 ABR 之污泥顆粒特性.............................................. 32 2-6-1 污泥顆粒化機制及微生物族群分布................................. 32 2-6-2 顆粒之結構及組成............................................... 34 2-6-3 顆粒粒徑之分析................................................. 35 2–7 活性污泥法概說.................................................. 36 2-7-1 活性污泥法之定義............................................... 36 2-7-2 活性污泥之形成................................................. 37 2-7-3 影響處理功能之環境因素......................................... 38 2–8 生物反應動力.................................................... 40 2-8-1 Michaelis-Menten Kinetics...................................... 40 2-8-2 Monod Kinetics ................................................ 42 2-8-3 Lawrence and McCarty Kinetics.................................. 43 2–9 生物動力常數之迴歸分析.......................................... 44 2–10 硝化/脫硝動力.................................................. 46 2-10-1 單段式硝化動力................................................ 47 2-10-2 單段式脫硝動力................................................ 48 2–11 生物系統之細菌分率............................................. 50 第三章 厭氣阻板反應器串聯活性污泥系統之COD降解及硝化/脫硝動力模式.... 52 3–1 模式假設條件.................................................... 52 3–2 模式推導........................................................ 53 第四章 實驗設備與方法................................................ 58 4–1 實驗設備........................................................ 58 4-1-1 厭氣阻板反應器串聯活性污泥系統................................. 58 4-1-2 批次反應器..................................................... 58 4-1-3 血清瓶反應器................................................... 60 4-1-4 玻璃燒杯反應器................................................. 60 4-1-5 儀器設備....................................................... 61 4–2 實驗方法........................................................ 62 4-2-1 試驗廢水....................................................... 62 4-2-2 厭氣阻板反應器/活性污泥之植種、馴化及起動...................... 63 4-2-3 厭氣阻板反應器串聯活性污泥系統之操作........................... 63 4-2-4 厭氣阻板反應器之追蹤劑試驗..................................... 64 4-2-5 強化培養硝化動力常數之探求(批次反應器)....................... 66 4-2-6 強化培養脫硝動力常數之探求(批次反應器)....................... 67 4-2-7 分散污泥和顆粒污泥之動力常數探求............................... 68 4-2-8 ABR 反應器CODutili/NO3--Nred 值之探求(批次反應器)............ 69 4-2-9 厭氣阻板反應器脫硝異營菌(fd)分率............................. 69 4-2-10 活性污泥反應器硝化自營菌(fn)分率............................ 70 4-2-11 COD 降解動力常數(厭氣阻板反應器之污泥)之探求................ 70 4-2-12 COD 降解動力常數(活性污泥反應器之污泥)之探求................ 71 4–3 分析方法........................................................ 71 4-3-1 水質分析....................................................... 71 4-3-2 Li+ .......................................................... 72 4-3-3 生物產氣分析(CH4、CO2、N2) .................................. 72 4-3-4 各階段處理水有機物成分之分子量分佈測定......................... 72 4-3-5 厭氣阻板反應器之生物顆粒特性分析............................... 74 第五章 結果與討論.................................................... 83 5–1 強化培養菌之動力常數............................................ 83 5-1-1 脫硝異營菌..................................................... 83 5-1-2 硝化自營菌..................................................... 85 5–2 ABR 串聯ASR 系統操作結果........................................ 86 5-2-1 TKN 去除....................................................... 86 5-2-2 TN 去除........................................................ 87 5-2-3 COD 去除....................................................... 88 5-2-4 生物代謝產氣................................................... 90 5-2-5 鹼度改變量..................................................... 91 5-2-6 各階段處理水有機物成分之分子量分布............................. 92 5–3 厭氣阻板反應器之水動力學特性.................................... 93 5–4 脫硝異營菌和甲烷菌分率/硝化自營菌和好氧異營菌分率............... 96 5-4-1 厭氣阻板反應器脫硝異營菌和甲烷菌分率........................... 96 5-4-2 活性污泥反應器硝化自營菌和好氧異營菌分率....................... 97 5–5 厭氣阻板反應器污泥床顆粒特性................................... 104 5-5-1 厭氣阻板反應器污泥床顆粒特性.................................. 104 5-5-2 污泥顆粒粒徑分佈.............................................. 106 5-5-3 分散污泥和顆粒污泥之動力常數.................................. 108 5–6 COD 降解動力常數............................................... 108 5-6-1 甲烷菌之COD降解動力常數....................................... 108 5-6-2 好氧異營菌之COD降解動力常數....................................111 5–7 動力模式之模擬與驗證............................................113 5-7-1 動力參數值及反應項.............................................113 5-7-2 模式模擬與驗證.................................................113 第六章 結 論........................................................ 121 參考文獻............................................................ 124 附 錄............................................................... 138 誌 謝............................................................... 139 自 述............................................................... 140

    曾四恭,1990。台灣省養豬廢水處理技術之研究。國立台灣大學環境工程研究所研究報告第238號,21-28。
    曾四恭,1992。豬糞尿廢水中氮磷去除方法之研究。國立台灣大學環境工程研究所研究報告第310號,51。
    黃正義、吳松雄,1981。豬舍廢水處理實務。第七屆廢水處理技術研討會論文集,353-360。
    蕭明謙,1992。生物木屑墊床養豬法應用於傳統豬舍之探討。國立成功大學環境工程研究所碩士論文,118-119。
    Agrawal, L. K., Ohashi, Y., Mochida, E., Okui, H., Ueki, Y., Harada, H., Ohashi, A. 1997. Treatment of raw sewage in a temperate climate using a UASB reactor and the hanging sponge cubes process. Water Sci. Technol. 36 (6-7): 433-440.
    Akunna, J. C., Bizeau, C., Moletta, R. 1993. Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: glucose, glycerol, acetic acid, lactic acid and methanol. Water Res. 27 (8): 165-173.
    Almeida, J. S., Julio, S. M., Reis, M. A. M., Carrondo, M. J. T. 1995. Nitrite inhibition of denitrification by Pseudomonas fluorescens. Biotechnol. Bioeng. 46: 194-201.
    Andrews, J. F. 1969. Dynamic model of the anaerobic degestion process. J. Sanitary Eng. Div. (ASCE). 95: 95-116.
    Anthonisen, A. C., Loehr, R. C. Prakasam, J. B. S. 1976. Inhibition of nitrification by ammonia and nitrous acid. J. Water Pollut. Control Fed. 48 (5): 835-852.
    APHA AWWA, WEF. 1995. Standard methods for the examination of water and wastewater. 19th ed., American Public Health Association, Washington, DC.
    Bachmann, A., Beard, V. L. McCarty, P. L. 1985. Performance characteristics of the anaerobic baffled reactor. Water Res. 19 (1): 99-106.
    Bailey, J. E., Ollis, D. F. 1986. Biochemical engineering fundamentals. 2nd ed. McGraw-Hill, New York.
    Balakrishnan, S., Eckenfelder, W. W. 1969. Nitrogen relationships in biological treatment process. III. Denitrification in the modified activated sludge process. Water Res. Perg. Press 3 (3): 177-188.
    Balmelle, B., Nguyen, K. M., Capdeville, B., Cornier, J. C., Deguin, A. 1992. Study of factors controlling nitrite build-up in biological processes for water nitrification. Water Sci. Technol. 26 (5-6): 1017-1025.
    Barber, W. P. Stuckey, D. C. 1999. The use of the anaerobic baffled reactor (ABR) for wastewater treatment: A review. Water Res. 33 (7): 1559-1578.
    Beccari, M., Passino, R., Ramadori, R., Tandoi, V. 1983. Kinetics of dissimilatory and nitrite reduction in suspended growth culture. J. Water Pollut. Control Fed. 55 (1): 58-64.
    Beer, W. J. Gibbs, D. F. 1975. Chemical flocculation as a tertiary treatment for pig effluent. Water Res. 9: 1047-1050.
    Beg, S. A., Siddiqi, R. H., Ilias, S. 1982. Inhibition of nitrification by arsenic, chromium, and fluoride. J. Water Pollut. Control Fed. 54 (5): 482-488.
    Bernet, N., Delgenes, N., Akunna, C. J., Delgenes, J. P., Moletta, R. 2000. Combined anaerobic-aerobic SBR for the treatment of piggery wastewater. Water Res. 34 (2): 611-619.
    Bilanovic, D., Battistoni, P., Cecchi, F., Pavan, P., Mata-alvarez, J. 1999. Denitrification under high nitrate concentration and alternating anoxic conditions. Water Res. 33 (15): 3311-3320.
    Borzacconi, L., Ottonello, G., Castelló, E., Pelaez, H., Gazzola, A., Viňas, M. 1999. Denitrification in a carbon and nitrogen removal system for leachate treatmeny: performance of a upflow sludge blanket (USB) reactor. Water Sci. Technol. 40 (8): 145-151.
    Boopathy, R., Larsen, V. F., Senior, E. 1988. Performance of anaerobic baffled reactor (ABR) in treating distillery wastewater from a Scotch Whisky factory. Biomass 16 (2): 133-143.
    Boopathy, R., Sievers, D. M. 1991. Performance of a modified anaerocic baffled reactor to treat swine waste. Trans. ASAE 34 (6): 2573-2578.
    Boopathy, R., Tilche, A. 1991. Anaerobic digestion of high-strength molasses wastewater using a hybrid anaerobic baffled reactor. Water Res. 25 (7): 785-790.
    Boopathy, R., Tilche, A. 1992. Pelletization of biomass in a hybrid anaerobic baffled reactor (HABR) treating acidified wastewater. Biores. Technol. 40 (2): 101-107.
    Boopathy, R. 1998. Biological treatment of swine waste using anaerobic baffled reactor. Biores. Technol. 64: 1-6.
    Bridle, T. R., Climenhage, D. C. and Stelzig, A. 1979. Operation of a full-scale nitrification-denitrification industrial waste treatment plant. J. Water Pollut. Control Fed. 51: 127-139.
    Campos, J. L., Garrido-Fernǎndez, J. M., Mĕndez, R., Lema, J. M. 1999. Nitrification at high ammonia loading rates in an activated sludge unit. Biores. Technol. 68 (2): 141-148.
    Chang, J. P., Morris, J. E. 1962. Studies on the utilization of nitrate by Micrococcus denitrificans. J. Gen. Microbiol. 29: 301.
    Charley, R. C., Hooper, D. G., McLee, A. G. 1980. Nitrification kinetics in activated sludge at various temperatures and dissolved oxygen concentrations. Water Res. 14 (12): 1387-1396.
    Chudoba, J., Čech, J. S., Chudoba, P. 1985. The effect of aeration tank configuration on nitrification kinetics. J. Water Pollut. Control Fed. 57 (11): 1078-1083.
    Clarens, Manuel., Bernet, Nicolas., Delgenes, Jean-Philippe and Moletta, Rene. 1998. Effect of nitrogen oxides and denitrification by Pseudomonas stutzeri on acetotrophic methanogenesis by Methanosarcina mazei. FEMS Microbiol. Ecology. 25: 271-276.
    Collins, C. F. and Incorpera, F. P. 1978. The effect of temperature control on biological wastewater treatment process. Water Res. 12: 547-557.
    Constantin, H., Fick, M. 1997. Influence of C-sources on the denitrification rate of a high-nitrate concentrated industrial wastewater. Water Res. 31 (3): 583-589.
    Davies, T. R., Pretouius, W. A. 1975. Denitrification with a bacterial disc unit. Water Res. 9 (4): 459-463.
    Dawson, R. N., Murphy, K. L. 1972. The temperature dependency of biological denitrification. Water Res. Perg. Press. 6 (1): 71-83.
    Delwiche, C. C. 1956. Denitrification in a symposium inorganic nitrogen metabolism. (Edited by McElroy, W. D. and Glass, B.) Johns Hopkins. Baltimore: 233-259.
    Denac, M., Miguel, A., Dunn, I. J. 1988. Modeling dynamic experiments on anaerobic degradation of molasses. Biotechnol. Bioeng. 31: 1-10.
    Dinçer, A. R., Kargi, F. 2000. Kinetics of sequential nitrification and denitrification processes. Enzyme Microbiol. Technol. 27 (1): 37-42.
    Dudley, B. T., Howgrave-Graham, A. R., Bruton, A. G. and Wallis, F. M. 1993. Image analysis to quantify and measure UASB digester granule. Biotechnol. Bioeng. 42: 83-90.
    Eckenfelder, W. W. 1967. Effect of process variable on sludge floc formation and setting characteristics. J. Water Pollut. Control Fed. 39 (12): 1850-1859.
    Fang, H. H. P., Chui, H. K., Li, Y. Y. (1994) Microbial structure and activity of UASB granules treating different wastewaters. Water Sci. Technol. 30: 87-96.
    Fang, H. H. P., Chui, H. K., Li, Y., Y. (1995a) Effect of degradation kinetics on the micro-structure of anaerobic biogranules. Water Sci. Technol. 32: 165-172.
    Fang, H. H. P., Chui, H. K., Li, Y. Y. (1995b) Microstructural analysis of UASB granules treating brewery wastewater. Water Sci. Technol. 31: 165-172.
    Francis, C. W., Mankin, J. B. 1977. High Nitrate Denitrification in continuous flow-stirred reactors. Water Res. 11 (3): 289-294.
    Garuti, G., Dohanyos, M., Tilche, A. 1992 Anaerobic-aerobic combined process for the treatment of sewage with nutrient removal: The Ananox process. Water Sci. Technol. 25 (7): 383-394.
    Gaudy, A. F. 1980. Microbiology for environment scientistic and engineers. McGraw-Hill, Inc., New York.
    Gaudy, A. F., Turer, B. G. 1964. Effect of air flow rate on response of activated sludge to quantitative shock loading. J. Water Pollut. Control Fed. 36 (5): 767-781.
    Gee, C. S., Suidan, M. T., Pfeffer, J. T. 1990. Modeling of nitrification under substrate-inhibiting conditions, J. Envir. Eng. (ASCE) 116 (1): 18-31.
    Glass, G., Silverstein, J. 1998. Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Water Res. 32 (3): 831-839.
    Grady, C. P. L., Lim, H. C. 1980. Biological Wastewater Treatment. Marcel Dekker, Inc., New York.
    Grobicki, A. M. W., Stuckey, D.C. 1992. Hydrodynamic characteristics of the anaerobic baffled reactor. Water Res. 26 (3): 371-378.
    Hallin, S., Pell, M. 1998. Metabolic properties of denitrifying bacteria adapting to methanol and ethanol in activated sludge. Water Res. 32 (1): 13-18.
    Halwachs, W. 1978. Km and Vmax from only one experiment. Biotechnol. Bioeng. 20: 281-285.
    Hanaki, K., Wantawin, C., Ohgaki, S. 1990. Effects of the activity of heterotrophs on nitrification in a suspended-growth reactor. Water Res. 24 (3): 289-296.
    Hao, X., Doddema, H. J., Groenestijn, J. W. 1997. Conditions and mechanisms affecting simulaneous nitrification and denitrification in a Pasveer oxidation ditch. Biores. Technol. 59: 207-215
    Harper, S. R., Pohiland, F. G. 1986. Recent developments in hydrogen management during anaerobic biological wastewater treatment. Biotechnol. Bioeng. 28: 285-602.
    Hayes, T. D., Theis, T. L. 1978. The distribution of heavy metals in anaerobic digestion. J. Water Pollut. Control Fed. 50: 61-72.
    Hendriksen, H. V., Ahring, B. K. 1996. Integrated removal of nitrate and carbon in an upflow anaerobic sludge blanket (UASB) reactor: operating performance. Water Res. 30 (6): 1451-1458.
    Henze, M., Harremoes, P. 1983. Anaerobic treatment of wastewater in fixed film reactors. Water Sci. Technol. 15: 1-10.
    Her, J. J., Huang, J. S. 1995. Denitrifying kinetics involving the distributed ratio of reductases. J. Chem. Tech. Biotechnol. 62 (3): 261-267.
    Huang, J. C., Ray, B. T., Huang, Y. J. 1989. Sludge digestion by anaerobic fludized beds. I. Lab performance data. J. Environ. Eng. (ASCE) 115: 291-304.
    Huang, J. S., Wu, C. S., Jih, C. G., Chen, C. T. 2001. Effect of addition of Rhodobacter sp. to activated-sludge reactors treating piggery wastewater. Water Res. 35 (16): 3867-3875.
    Jih, C. G., Huang, J. S., Hsieh, K. C. 2001. Performance evaluation of single-sludge reactor system treating high-strength nitrogen wastewater. J. Hazardous Materials, 85 (3): 213-227
    Jih, C. G., Huang, J. S., Huang, S. Y. 2002. Process kinetics of upflow anaerobic sludge bed reactors treating inhibitory substrate. Water Environ. Res. 75 (1): 5-14.
    Kong, Z., Vanrolleghem, P., Verstraete, W. 1996. Simultaneous determination of inhibition kinetics of carbon oxidation and nitrification with a respirometer. Water Res. 30 (4): 825-836.
    Kornaros, M., Zafiri, C., Lyberatos, G. 1996. Kinetics of denitrification by Pseudomonas denitrificans under growth conditions limited by carbon and/or nitrate or nitrite. Water Envir. Res. 68 (5): 934-945.
    Kuan, Y. S., Joo, H. T. 1999. Influence of support media on biomass growth and retention in anaerobic filters. Water Res. 33 (6): 1471-1481.
    Kugelman, I. J., Chin, K. K. 1971. Toxicity synergism and antaginism in anaerobic waste treatment process. American Chem. Society. 105: 55-90.
    Kugelman, I. J., MaCarty, P. L. 1965. Cation toxicity and stimulation in anaerobic waste treatment. J. Water Pollut. Control Fed. 37: 97-104.
    Langenhoff, A. A. M., Stuckey, D. C. 2000. Treatment of dilute wastewater using an anaerobic baffled reactor: Effect of low temperature. Water Res. 34 (15): 3867-3875.
    Langenhoff, A. A. M., Intrachandra, N., Stuckey, D. C. 2000. Treatment of dilute soluble and colloidal wastewater using an anaerobic baffled reactor: influence of hydraulic retention time. Water Res. 34 (4): 1307-1317.
    Lawrence, A. W., McCarty, P. L. 1969. Kinetics of methane fermentation in anaerobic treatment. J. Water Pollut. Control Fed. 58 (1): 52-59.
    Levenspiel, O. 1972. Chemical reaction engineering, 2nd ed., Wiley, New York.
    Lettinga, G., Hobma, S. W., Hulshoff Pol, L. W., de Zeeuw, W., de Jong, P., Grin, P., Roersma, R. 1982. Design operation and economy of anaerobic treatment. Water Sci. Technol. 15 (8): 175-195.
    Lettinga, G., van Velsen, A. F. M., Hobma, S. W., de Zeeuw, W., Klapwijk, A. 1980. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol. Bioeng. 22 (4): 699-734.
    Lin, Ying-FENG., Chen, Kuo-Cheng. 1995. Denitrification and methano-genesis in a co-immobilized mixed culture system. Water Res. 299 (1): 35-43.
    MacLeod, F. M., Guiot, S. R., Costerton, J. W. 1990. Layered structure of bacterial aggregate produced in an upflow anaerobic sludge bed and filter reactor. Appl. Environ. Microbiol. 56: 1598-1607.
    McCarty, P. L. 1964. Anaerobic waste treatment fundamentals-part II-environment requirements and control. Public Works. 95: 91-94.
    McCarty, P. L., Beck, L., Amant, P. 1969. Biological denitrification of wastewater by addition of organic materials. Proc. 24th. Annual Pedue Industrial Waste Conference Pedue University, Lafayette, Ind. Pp.1168-1179.
    Macki, R. I., Bryant, M. P. 1981. Metabolic activity of fatty acidoxidizing bactaeria and contribution of acetate, propinate, butyrate and CO2 to methanogenesis in cattle waste at 40 and 60℃. Appl. Envir. Microbiol. 41: 1363-1373.
    Malina, J. F., Pohland, F. G. 1992. Design of anaerobic processes for the trearment of industrial and municipal wastes. Technomic Publishing Co., Washington DC.
    Mateju, V., Cizinska, S., Krejci, J., Janoch, T. 1992. Biological water denitrification-a review. Enzyme Microbiol. Technol. 14 (3): 170-183.
    Mauret, M., Paul, E. Puech-Costes, E., Maurette, M. T., Baptiste, P. 1996. Application of experimental research methodology to the study of nitrification in mixed culture. Water Sci. Technol. 34 (1-2): 245-252.
    Metcalf & Eddy Inc. 1991. Wastewater Engineering: Treatment, Disposal, Reuse. International editions, McGraw-Hill, New York.
    Mitchell, R. 1992. Environmental microbiology. Wiley, New York.
    Münch, E. V., Lant, P., Keller, J. 1996. Simultaneous nitrification and denitification in bench-scale sequencing batch reactors. Water Res. 30 (2): 277-284.
    Narkis, N., Rebhun, M., Sheindorf CH. 1979. Denitrificaton at various carbon to nitrogen ratios. Water Res. 13: 93-98
    Nauman, E. B., Buffham, B. A. 1983. Mixing in continuous flow system. Chap. 3, Wiley, New York.
    Painter, H. A. 1970. A review of inorganic nitrogen metabolism in microorganism. Water Res., 4: 393-450.
    Parkin, G. F., Owen, W. F. 1986. Fundamentals of anaerobic digestion of wastewaster sludges. J. Envir. Eng. (ASCE) 112: 867-920.
    Payne, W. J. 1981. Denitrification. Chap. 2 & chap. 3, John Wiley & Sons, New York.
    Poduska, R. A. 1974. Dynamics of nitrification in the activated sludge process. In Proc. of the 29th Ind. Waste Conf., Purdue Univ., West Lafayette, Ind., USA.
    Polprasert, C., Kemmadamrong, P., Tran F. T. 1992. Anaerobic baffled reactor (ABR) process for treating a slaughterhouse wastewater. Environ. Technol. 13: 857-865.
    Roš, M. 1995. Denitrification kinetics in an activated sludge system. Water Sci. Technol. 32: 323-330.
    Ruiz I., Veiga M. C., de Santiago, P., Blazquez, R. 1997. Treatment of slaughterhouse wastewater in a UASB reactor and an anaerobic filter. Biores. Technol. 60 (3): 251-258.
    Sambhunath, G. 1975. Anaerobic acidogensis of wastewater sludge. J. Water Pollut. Control Fed. 47: 30-45.
    Sanchez Riera, F., Corodoba, P., Sineriz, F. 1985. Use of UASB reactor for the anaerobic treatment of stillage from sugar cane molasses. Biotechnol. Bioeng. 27: 1710-1716.
    Sayed, S., Campen, L., Lettinga, G. 1987. Anaerobic treatment of slaughterhouse waste using a flocculant sludge UASB reactor. Biol. Wastes 21: 11-28.
    Schmidt, J. E., Ahring, B. K. 1996. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol. Bioeng. 49 (2): 229-246.
    Schoberl, R. F., Ahlert, R. C. 1975. Kinetic response of Pertur bed marine nitrification systems. J. Water Pollut. Control Fed. 47 (3): 472-476.
    Setiadi, T., Husaini, Djajadiningr, 1996. Palm oil mill effluent treatment by anaerobic baffled reactors: Recycle effects and biokinetic parameters. Water Sci. Technol. 34 (11): 59-66.
    Shah, Y. T. 1978. Gas-liquid-solid reactor design. Chap. 3, McGraw-Hill, New York.
    Shammas, N. K. 1986. Interactions of temperature, pH, and biomass on the nitrification process, J. Water Pollut. Control Fed. 58 (1): 52-59.
    Sharma, B., Ahlert, R. C. 1977. Nitrification and nitrogen removal. Water Res. 11 (10): 897-925.
    Sheintuch, M., Tartakovsky, B., Narkis, N., Rebhun, M. 1995. Substrate inhibition and multiple states in a continuous nitrification process. Water Res. 29 (3): 953-963.
    Shieh, W. K., LaMotta, E. J. 1979. Effect of initial substrate concentration on the rate of nitrification in a batch experiment. Biotechnol. Bioeng. 21 (1): 201-211.
    Speece, R. E. 1970. The effect of short-term temperature variation on methane production. J. Water Pollut. Control Fed. 42: 241-256.
    Speece, R. E. 1983. Anaerobic biotechnology for industrial wastewater treatment. Environ. Sci. Technol. 17: 416A-427A.
    Staab, K. F., Stotz, G., Bardtke, D., Spang, H. J. 1983. Investigations on treatment of waste from pig fattening units up to a quality suitable for water course discharge., Agricultural Waste. 5: 189-204.
    Srinath, E. G., Prakasam, T. B. S., Loehr, R. C. 1974. A technique for estimating active nitrifying mass and its application in designing nitrifying systems. Proc. 29th Ind. Waste Conf., Purdue Univ. pp. 1038-1048.
    Stensel, H. D., Loehr, R. C., Lawrence, A. W. 1973. Biological kinetics of suspended-growth denitrification. J. Water Pollut. Control Fed. 45 (2): 249-261.
    Stratton, F. E., McCarty, P. L. 1967. Envir. Sci. Tech. 1 (5): 405-410.
    Stronach, S. M., Rudd, T., Lester, J. N. 1986. Anaerobic digestion process in industrial wastewater treatment. Springer-Verlag Co., New York.
    Stuckey, D. C. (1983) Anaerobic digestion in developing countries. In Advances in Fermentation. Chelsea College, London.
    Sutton, P. M., Murphy, K. L., Dawson, R. N. 1975. Low tepmerature biological denitrification of wastewater. J. Water Pollut. Control Fed. 47 (1): 122-134.
    Sutton, P. M., Murphy, K. L., Jank, B. E., Monaghan, B. A. 1975. Efficacy of biological nitrificaion. J. Water Pollut. Control Fed. 47 (11): 2665-2673.
    Tait, S. J., Freidman, A. A. 1980. Anaerobic rotating biological contactor for carbonaceous wastewaters. J. Water Pollut. Control Fed. 52 (8): 2257-2269.
    Tay, J. H., Yan, Y. G. 1996. Influence of substrate concentration on microbial selection and granulation during start-up of upflow anaerobic sludge blanket reactors. Water Envir. Res. 68 (12): 1144-1150.
    Tilche, A., Yang, X. 1987. Light and scanning electron microscope observations on the granular biomass of experimental SBAF and HABR reactor. Proceedings of Gasmat Workshop, Netherlands, pp. 170-178.
    Tomlinson, E. J., Chamber, B. 1979. The effect of longitudinal mixing on the settleability of activated sludge. Technical Report TR 122, Water Research Centre, Stevenage.
    Tseng, C. C., Potter, T. G., Koopman, B. 1998. Effect of influent chemical oxygen demand to nitrogen ratio on a partial nitrification/complete denitrification process. Water Res. 32 (1): 165-173.
    Uyanik, S., Sallis, P. J., Anderson, G. K. 2002. The effect of polymer addition on granulation in an anaerobic baffled reactor (ABR). Part I: Process performance. Water Res. 36 (4): 933-943.
    Weber, A. S., Tchohanoglous, G. 1984. Nitrification in water hyacinth treatment systems. J. Envir. Eng. (ASCE) 111 (10): 699-713.
    Welander, U., Henrysson, T., Welander, T., 1998. Biological nitrogen removal from municipal landfill leachate in a pilot scale suspended carrier biofilm process. Water Res. 32 (5): 1564-1570.
    Wild, H. E., Sawyer, C. N., McMahon, T. C. 1971. Factors affecting nitrification kinetics. J. Water Pollut. Control Fed. 43 (9): 1945-1954.
    Wong-Chong, G. M., Loehr, R. C. 1978. Kinetics of microbial nitrification : nitrite-nitrogen oxidation. Water Res. 12: 605-609.
    Xing, J., Tilche, A. 1992. The effect of hydraulic retention time on the hybrid anaerobic baffled reactor performance at constant loadings. Biomass Bioenergy 3 (1): 25-29.
    Xing, J., Boopathy, R., Tilche, A. 1991. Model evaluation of hybrid anaerobic baffled reactor treating molasses wastewater. Biomass Bioenergy 1 (5): 267-274.
    Yang, L., Alleman, J. E. 1992. Investigation of batchwise nitrite build-up by enriched nitirfication culture. Waer. Res. 26 (5-6): 997-1005.
    Yang P. Y., Moengangongo, T. H. 1987. Operational stability of horizontally baffled anaerobic reactor for diluted swine wastewater in the tropics. Trans. ASAE 30 (4): 1105-1110.
    Young, H. W., Young, J. C. 1988. Hydraulic characteristics of upflow anaerobic filter. J. Environ. Eng. 114 (3): 621-638.
    Zhu, S., Chen, S. 1999. An experimental study on nitrification biofilm performance using a series reactor system. Aquacultural Eng. 20: 245-259.
    Zingerman, J. P., Metha, S. C., Salter, J. M., Radebaugh, G. W. 1992. Validation of a computerized image analysis system for particle size determination: Pharmaceutical application. International J. Pharma. 88: 303-312.

    下載圖示 校內:2007-07-13公開
    校外:2007-07-13公開
    QR CODE