| 研究生: |
夏挺鴻 Sia, Ting-Hong |
|---|---|
| 論文名稱: |
懸吊被動式肩關節鏡夾持器研究 Research on Suspended Passive Holder for Shoulder Arthroscopes |
| 指導教授: |
朱銘祥
Ju, Ming-Shaung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 懸吊式夾持器 、肩關節鏡 、重力補償機構 、永久磁鐵煞車機構 |
| 外文關鍵詞: | suspended holder, shoulder arthroscopes, gravity compensation mechanism, permanent magnet braking mechanism |
| 相關次數: | 點閱:34 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今肩關節鏡手術大多都是人力持鏡,醫師與持鏡助手需要多次溝通才能完成協調,導致手術時間拉長,長時間下持鏡的手難免會顫抖連帶造成畫面失焦以及晃動,使得醫師難以作業。因此為了提高手術效率,減少人力資源負擔,使用夾持工具進行手術是目前微創外科手術的重要研究之一。本研究團隊先前已開發了針對肩關節鏡手術的站立式夾持器,本研究目標為改善先前夾持器臨床使用的缺點。本研究發展的懸吊式肩關節鏡夾持器整合定位及定向機構、永磁煞車機構與重力補償機構。透過此系統醫師可以獨自進行肩關節鏡手術,短時間內就能熟悉此系統的操作,經由7個自由度的夾持器來調整關節鏡位置,並利用永磁煞車機構即時固定夾持器姿態,安裝重力補償機構可以減輕使用者調整時的負擔。為評估夾持器的使用表現,本研究邀請執刀醫師參加肩關節手術的模擬任務,利用動作檢測系統,紀錄、分析受試者動作,並利用綜合評分表評估使用者操作夾持器的表現情況。
本研究發展之懸吊被動式肩關節鏡夾持器可以提升肩關節鏡臨床手術的手術效率,減少醫師負擔。
Nowadays, most shoulder arthroscopy are performed manually. The surgeon and the assistant who holds the arthroscope need to communicate several times to adjust the location and orientation of the arthroscope. It may lead to prolonged operation time and mistakes. Therefore, to improve the efficiency of surgery and reduce the burden of human resources, using holder for minimally invasive surgery is an important research area. Our team has previously developed a standing holder for shoulder arthroscopes, and this study aimed to improve the drawbacks of the previous holder found from clinical trials. A suspended passive holder for shoulder arthroscope was developed in this study by integrating a positioning and orientation mechanism, a permanent magnet braking mechanism and a gravity compensation mechanism. Using this system, the surgeon can perform shoulder arthroscopy alone, and become proficient to use the holder after short learning time. The surgeon can adjust the position of the arthroscope by mechanism having 7 degrees of freedom and use the permanent magnet braking mechanism to fix the holder instantly. The gravity compensation mechanisms installed in the holder can reduce the load on the surgeon during the fine adjustment of the arthroscope position. To evaluate the performance of the holder, a surgeon was invited to use the holder to do simulated surgical tasks on a shoulder phantom. A motion analysis system was used to record hand movements of the surgeon and the kinematics of the hand movements were utilized to evaluate the effects of the holder on efficiency of the simulated surgery. A global rating scale is used to assess user's subjective opinions on using the holder.
The experimental results shows the new suspended passive holder may improve the surgical efficiency of the shoulder arthroscopy and reduce clinical human burden in shoulder surgery.
[1] K. Takagi, "Arthroscope," Clinical Orthopaedics and Related Research,vol. 167, pp. 6-8, 1982.
[2] J. R. Andrews, W. G. Carson, and K. Ortega, "Arthroscopy of the shoulder: Technique and normal anatomy," The American Journal of Sports Medicine, vol. 12, no. 1, pp. 1-7, 1984.
[3] J. R. Andrews, T. S. Broussard, and W. G. Carson, "Arthroscopy of the shoulder in the management of partial tears of the rotator cuff: A preliminary report," Arthroscopy: The Journal of Arthroscopic & Related Surgery, vol. 1, no. 2, pp. 117-122, 1985.
[4] F. A. Cordasco, S. Steinmann, E. L. Flatow, and L. U. Bigliani, "Arthroscopic treatment of glenoid labral tears," The American Journal of Sports Medicine, vol. 21, no. 3, pp. 425-431, 1993.
[5] J. P. Bradley, "Arthroscopic treatment for adhesive capsulitis".Operative Techniques in Orthopaedics, Vol 1, No 3 (July), pp. 248-252, 1991.
[6] J. Jaspers, P. Breedveld, J. Herder, and C. Grimbergen, "Camera and Instrument Holders and Their Clinical Value in Minimally Invasive Surgery," Surgical Laparoscopy Endoscopy & Percutaneous Techniques, vol. 14, pp. 145-52, 2004.
[7] P. A. Finlay ,M. H. Ornstein, "Controlling the movement of a surgical laparoscope," IEEE Engineering in Medicine and Biology Magazine, vol. 14, no. 3, pp. 289-291, 1995.
[8] G. F. Buess et al, "A new remote-controlled endoscope positioning system for endoscopic solo surgery."Surgical Endoscopy, vol. 14, no. 4, pp.395–399, 2000.
[9] T. Yasunaga et al, "Remote-controlled laparoscope manipulator system, Naviot™, for endoscopic surgery." International Congress Series, 1256, pp.678–683, 2003.
[10] P. Berkelman, E. Boidard, P. Cinquin, J. Troccaz, (n.d.), "LER: the light endoscope robot. " Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).
[11] N. Zemiti, G. Morel, T. Ortmaier, N. Bonnet, "Mechatronic Design of a New Robot for Force Control in Minimally Invasive Surgery. " IEEE/ASME Transactions on Mechatronics, vol. 12, no. 2, pp.143–153, 2007.
[12] R. O. Flores, J. N. Zermeno, A. M. Martínez, M. G. Vera, J. Jesus Nieto Miranda,and D. L. Espinoza, "Laparoscopic Nissen solo surgery using PMAT (first experience)," Minimally Invasive Therapy & Allied Technologies, vol. 16, no. 6, pp. 347-349, 2007.
[13] R. Polet, J . Donnez, " Using a laparoscope manipulator (LAPMAN) in laparoscopic gynecological surgery. " Surg Technol Int 17: pp.187–191, 2008.
[14] J. Jarry, A. Moreau Gaudry, J. A. Long, E. Chipon, P. Cinquin, and J. L. Faucheron, "Miniaturized Robotic Laparoscope-Holder for Rectopexy: First Results of a Prospective Study," Journal of Laparoendoscopic & Advanced Surgical Techniques, vol. 23, no. 4, pp. 351-355, 2013.
[15] M. O. Schurr et al, "Trocar and instrument positioning system TISKA. " Surgical Endoscopy, vol. 13, no .5 , pp.528–531,1999.
[16] J. E. N. Jaspers, K. T. Den Boer, W. Sjoerdsma, M. Bruijn, and C. A. Grimbergen, "Design and Feasibility of PASSIST, a Passive Instrument Positioner," Journal of Laparoendoscopic & Advanced Surgical Techniques, vol. 10, no. 6, pp. 331-335, 2000.
[17] A. Arezzo, M. O. Schurr, A. Braun, G. F. Buess, "Experimental assessment of a new mechanical endoscopic solosurgery system: Endofreeze. "Surgical Endoscopy, vol. 19, no. 4, pp. 581-588, 2005.
[18] J. M. Sackier, Y. Wang, " Robotically assisted laparoscopic surgery. " Surgical Endoscopy, vol.8, no.1 , pp.63–66, 1994.
[19] C.-H. Kuo and S.-J. Lai, "Design of a Novel Statically Balanced Mechanism for Laparoscope Holders With Decoupled Positioning and Orientating Manipulation," Journal of Mechanisms and Robotics, vol. 8, no. 1, pp. 1-10, 2015.
[20] X. Sun, Y. He, Y. Hu, P. Zhang, H. Zhang, and J. Zhang, "Design of a robotic endoscope holder for sinus surgery," in 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 391-396, 2015.
[21] 張智涵, "應用於肩關節手術之關節鏡支撐器之設計開發與驗證", 國立成功大學生物醫學工程學系, 碩士論文, 2019.
[22] S. H. Kang, Y.S. Cho, S.H. Min, Y. S. Park, S.H. Ahn, D. J. Park, H.H. Kim, "Early experience and learning curve of solo single-incision distal gastrectomy for gastric cancer: a review of consecutive 100 cases. “Surgical Endoscopy", vol. 33, no. 10, pp. 3412–3418, 2019.
[23] J. T. Hamamoto, R. M. Frank, J. D. Higgins, M. T. Provencher, A. A. Romeo, and N. N. Verma, "Shoulder Arthroscopy in the Lateral Decubitus Position," Arthroscopy Techniques, vol. 6, no. 4, pp. 1169-1175, 2017.
[24] S. Mannava, A. H. Jinnah, J. F. Plate, A. V. Stone, C. J. Tuohy, and M. T. Freehill, "Basic Shoulder Arthroscopy: Beach Chair Patient Positioning," Arthroscopy Techniques, vol. 5, no. 4, pp. 731-735, 2016.
[25] C. M. Peruto, M. G. Ciccotti, and S. B. Cohen, "Shoulder Arthroscopy Positioning: Lateral Decubitus Versus Beach Chair," Arthroscopy: The Journal of Arthroscopic & Related Surgery, vol. 25, no. 8, pp. 891-896, 2009.
[26] R. L. A. J. C. E. R. K. N. Ryu, AANA Advanced Arthroscopy: The Shoulder. Saunders; 1 edition, 2010.
[27] E. M. Wolf, "Anterior portals in shoulder arthroscopy," Arthroscopy: The Journal of Arthroscopic & Related Surgery, vol. 5, no. 3, pp. 201-208, 1989.
[28] Wang, J., and Gosselin, C. M., “Static Balancing of Spatial Four-Degreeof-Freedom Parallel Mechanisms,” Mech. Mach. Theory, vol. 35, no. 4, pp. 563-592, 2000.
[29] Wang, J. G., and Gosselin, C. M., “Static Balancing of Spatial ThreeDegree-of-Freedom Parallel Mechanisms,” Mech. Mach. Theory, vol. 34, no. 3, pp. 437-452, 1999.
[30] Laliberte, T., Gosselin, C. M., and Jean, M., “Static Balancing of 3-DOF Planar Parallel Mechanisms,” IEEE/ASME Trans. Mechatron., vol. 4, no. 4, pp. 363-377, 1999.
[31] Russo, A., Sinatra, R., and Xi, F., “Static Balancing of Parallel Robots,” Mech. Mach. Theory, vol. 40, no. 2, pp. 191-202, 2005.
[32] Agrawal, S. K., and Fattah, A., “Reactionless Space and Ground Robots: Novel Designs and Concept Studies,” Mech. Mach. Theory, vol. 39, no. 1, pp. 25-40, 2004.
[33] Nathan, R. H., “A Constant Force Generation Mechanism,” ASME J. Mech., Transm. Autom. Des., vol. 107, no. 4, pp. 508-512, 1985.
[34] Rahman, T., Ramanathan, R., Seliktar, R., and Harwin, W., “Simple Technique to Passively Gravity-Balance Articulated Mechanisms,” ASME J. Mech. Des., vol. 117, no. 4, pp. 655-658, 1995.
[35] Ebert-Uphoff, I., Gosselin, C. M., and Laliberte, T., “Static Balancing of Spatial Parallel Platform Mechanisms-Revisited,” ASME J. Mech. Des., vol. 122, no. 1, pp. 43-51, 2000.
[36] Deepak, S. R., and Ananthasuresh, G. K., “Perfect Static Balance of Linkages by Addition of Springs But Not Auxiliary Bodies,” ASME J. Mech. Rob., vol. 4, no. 2, p. 021014, 2012.
[37] Herder, J. L., “Design of Spring Force Compensation Systems,” Mech. Mach. Theory, vol. 33, no. 1-2, pp. 151–161, 1998.
[38] van Dorsser, W. D., Barents, R., Wisse, B. M., and Herder, J. L., “Gravity-Balanced Arm Support With Energy-Free Adjustment,” ASME J. Med. Devices, vol. 1, no. 2, pp. 151–158, 2007.
[39] van Dorsser, W. D., Barents, R., Wisse, B. M., Schenk, M., and Herder, J. L., “Energy-Free Adjustment of Gravity Equilibrators by Adjusting the Spring Stiffness,” Proc. Inst. Mech. Eng., Part C, vol. 222, no. 9, pp. 1839–1846, 2008.
[40] Barents, R., Schenk, M., van Dorsser, W. D., Wisse, B. M., and Herder, J. L., “Spring-to-spring balancing as energy-free adjustment method in gravity equilibrators”. Journal of Mechanical Design, vol. 133, no. 6, p. 061010, 2011.
[41] Lin, P.-Y., Shieh, W.-B., and Chen, D.-Z., “Design of a GravityBalanced General Spatial Serial-Type Manipulator,” ASME J. Mech. Rob., vol. 2, no. 3, p. 031003, 2010.
[42] Lin, P.-Y., Shieh, W.-B., and Chen, D.-Z., “A Stiffness Matrix Approach for the Design of Statically Balanced Planar Articulated Manipulators,” Mech. Mach. Theory, vol. 45, no. 12, pp. 1877–1891, 2010.
[43] Lin, P.-Y., “Design of Statically Balanced Spatial Mechanisms With Spring Suspensions,” ASME J. Mech. Rob., vol. 4, no. 2, p. 021015, 2012.
[44] Lin, P.-Y., Shieh, W.-B., and Chen, D.-Z., “Design of Statically Balanced Planar Articulated Manipulators With Spring Suspension,” IEEE Trans. Rob., vol. 28, no. 1, pp. 12-21, 2012.
[45] Lee, Y.-Y., and Chen, D.-Z., “Determination of Spring Installation Configuration on Statically Balanced Planar Articulated Manipulators,” Mechanism and Machine Theory, vol. 74, 2014.
[46] Agrawal, A., and Agrawal, S. K., “Design of Gravity Balancing Leg Orthosis Using Non-Zero Free Length Springs,” Mech. Mach. Theory, vol. 40, no. 6, pp. 693-709, 2005.
[47] Eckenstein, N., and Yim, M., “Modular Advantage and Kinematic Decoupling in Gravity Compensated Robotic Systems,” ASME J. Mech. Rob., vol. 5, no. 4, p. 041013, 2013.
[48] Deepak, S. R., and Ananthasuresh, G. K., “Static Balancing of SpringLoaded Planar Revolute-Joint Linkages Without Auxiliary Links,” 14th National Conference on Machines and Mechanisms (NaCoMM09), NIT, Durgapur, India, 2009.
[49] H.-S. Kim and J.-B. Song, "Multi-DOF Counterbalance Mechanism for a Service Robot Arm," IEEE/ASME Transactions on Mechatronics, vol. 19, no. 6, pp. 1756-1763, 2014.
[50]https://www.youtube.com/watch?v=5wCK6XGC3ig&ab_channel=NorthwesternRobotics
[51] 台灣三柱:https://tw.misumi-ec.com/pdf/tech/MSM1/Spring_Calculations.pdf